
State Application Identifier

Applicant Identifier

1. * TYPE OF SUBMISSION 4. a. Federal Identifier

5. APPLICANT INFORMATION * Organizational DUNS:
* Legal Name:

Department: Division:

* Street1:

Street2:

* City:

* State:

* ZIP / Postal Code:* Country:

Person to be contacted on matters involving this application
* First Name: Middle Name:

* Last Name: Suffix:

* Phone Number: Fax Number:

Email:

6. * EMPLOYER IDENTIFICATION (EIN) or (TIN): 

7. * TYPE OF APPLICANT:

Other (Specify):

Women Owned Socially and Economically DisadvantagedSmall Business Organization Type

If Revision, mark appropriate box(es).

9. * NAME OF FEDERAL AGENCY:

A. Increase Award B. Decrease Award C. Increase Duration D. Decrease Duration

E. Other (specify):

10. CATALOG OF FEDERAL DOMESTIC ASSISTANCE NUMBER:

* Is this application being submitted to other agencies?

TITLE:

11. * DESCRIPTIVE TITLE OF APPLICANT'S PROJECT:

2. DATE SUBMITTED

3. DATE RECEIVED BY STATEAPPLICATION FOR FEDERAL ASSISTANCE 

SF 424 (R&R) 

County / Parish:

Province:

Prefix:

What other Agencies?

Pre-application Application Changed/Corrected Application

04/17/2012

GRANT10869132

092530369

Regents of the University of California, Los Angeles

Office of Contract and Grant Administration

11000 Kinross Avenue, Suite 211

Los Angeles Los Angeles County

90095-1406

Mr. Evan

Garcia

310-943-1656

ocga3@research.ucla.edu

956006143

12.300

Basic and Applied Scientific Research

Machine Reasoning and Intelligence for Naval Sensing

Yes No

USA: UNITED STATES

CA: California

H: Public/State Controlled Institution of Higher Education

Office of Naval Research

310-794-0171

New Resubmission

Renewal Continuation Revision

8. * TYPE OF APPLICATION:

OMB Number: 4040-0001 
Expiration Date: 06/30/2011 

b. Agency Routing Identifier 311, {Schwartz, Carey}

12. PROPOSED PROJECT:
* Start Date * Ending Date
06/01/2012 05/31/2017

* 13. CONGRESSIONAL DISTRICT OF APPLICANT

CA-030

14. PROJECT DIRECTOR/PRINCIPAL INVESTIGATOR CONTACT INFORMATION
* First Name: Middle Name:

* Last Name: Suffix:

Position/Title:

* Organization Name:

Department: Division:

* Street1:

Street2:

* City:

* ZIP / Postal Code:* Country:

* Phone Number: Fax Number:

* Email:

* State:

County / Parish:

Province:

Prefix:

Osher

StanleyDr.

90095-1555

Los Angeles County

Physical Sciences

Los Angeles

Box 951555

Mathematics

Professor

Regents of the University of California, Los Angeles

310-206-2679

sjo@math.ucla.edu

CA: California

USA: UNITED STATES

310-825-1758



APPLICATION FOR FEDERAL ASSISTANCESF 424 (R&R) Page 2
15. ESTIMATED PROJECT FUNDING 16. * IS APPLICATION SUBJECT TO REVIEW BY STATE EXECUTIVE 

ORDER 12372 PROCESS?

a. YESa. Total Federal Funds Requested

17. By signing this application, I certify (1) to the statements contained in the list of certifications* and (2) that the statements herein are 
true, complete and accurate to the best of my knowledge.  I also provide the required assurances * and agree to comply with any resulting 
terms if I accept an award.  I am aware that any false, fictitious. or fraudulent statements or claims may subject me to criminal, civil, or 
administrative penalities.  (U.S. Code, Title 18, Section 1001)

19. Authorized Representative

* First Name: Middle Name:

* Last Name: Suffix:

* Position/Title:

* Organization:

Department: Division:

* Street1:

Street2:

* City:

* State:

* ZIP / Postal Code:* Country:

* Phone Number: Fax Number:

* Email:

* Signature of Authorized Representative * Date Signed

20. Pre-application

* The list of certifications and assurances, or an Internet site where you may obtain this list, is contained in the announcement or agency specific instructions.

County / Parish:

c. Total Federal & Non-Federal Funds

18. SFLLL or other Explanatory Documentation

Province:

b. Total Non-Federal Funds

Prefix:

1,599,998.00

0.00

1,599,998.00

0.00

 

 

 

* I agree

Mr. Evan

Garcia

Grant Analyst

Regents of the University of California, Los Angeles

11000 Kinross Avenue, Suite 102

Los Angeles Los Angeles County

CA: California

USA: UNITED STATES 90095-1406

310-794-0171 310-943-1656

ocga3@research.ucla.edu

Office of Contract & Grant Adm

View AttachmentDelete AttachmentAdd Attachment

Add Attachment Delete Attachment View Attachment

DATE:

THIS PREAPPLICATION/APPLICATION WAS MADE 
AVAILABLE TO THE STATE EXECUTIVE ORDER 12372 
PROCESS FOR REVIEW ON:

PROGRAM HAS NOT BEEN SELECTED BY STATE FOR 
REVIEW

PROGRAM IS NOT COVERED BY E.O. 12372; OR

Evan  Garcia 04/17/2012

b. NO
d. Estimated Program Income



* Last Name

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

* Project Role Base Salary ($)
* Fringe 

Benefits ($) * Funds Requested ($)

9.

8.

7.

6.

5.

4.

3.

2.

1.

Total Funds requested for all Senior Key Persons in the attached file
Total Senior/Key Person

Additional Senior Key Persons:

B. Other Personnel

A. Senior/Key Person

* Number of  
Personnel * Project Role

Acad.  
Months

Sum. 
Months

* Requested 
Salary ($)

Cal. 
Months

Post Doctoral Associates

Graduate Students

Undergraduate Students

Secretarial/Clerical

Total Number Other Personnel Total Other Personnel

Total Salary, Wages and Fringe Benefits (A+B)

Prefix * First Name Middle Name Suffix

* Fringe 
Benefits ($) * Funds Requested ($)

Acad.  
Months

Sum. 
Months

* Requested 
Salary ($)

Cal. 
Months

RESEARCH & RELATED Budget {A-B} (Funds Requested)

* ORGANIZATIONAL DUNS:

OMB Number: 4040-0001 
Expiration Date: 06/30/2011

0925303690000

Project Subaward/Consortium

5

Delete Entry

Dr. Stanley Osher PD/PI 0.00 0.00 0.00

Dr. Andrea Bertozzi Co-PD/PI 0.00 0.00 0.00

0.00

3.00

3.00

40,088.00

Regents of the University of Ca

2

3

06/01/2012 09/30/2012 Budget Period 

View AttachmentDelete AttachmentAdd Attachment

1

(b)(4)

(b)(4)

(b) (4)



C. Equipment Description

List items and dollar amount for each item exceeding $5,000

Equipment item * Funds Requested ($)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Total funds requested for all equipment listed in the attached file11.

D. Travel

Domestic Travel Costs ( Incl. Canada, Mexico and U.S. Possessions)1.

Foreign Travel Costs2.

Total Travel Cost

Total Equipment

E. Participant/Trainee Support Costs

Tuition/Fees/Health Insurance1.

Stipends2.

Travel3.

Subsistence4.

Other5.

Number of Participants/Trainees Total Participant/Trainee Support Costs

Funds Requested ($)

Funds Requested ($)

RESEARCH & RELATED Budget {C-E} (Funds Requested)

RESEARCH & RELATED BUDGET - SECTION C, D, & E, BUDGET PERIOD  1

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

Additional Equipment:

* ORGANIZATIONAL DUNS:

Project Subaward/Consortium

0925303690000

09/30/201206/01/2012

1,250.00

1,250.00

2,500.00

Regents of the University of Ca

View AttachmentDelete AttachmentAdd Attachment

Budget Period 1Delete Entry



F. Other Direct Costs

Materials and Supplies1.

Publication Costs2.

Consultant Services3.

ADP/Computer Services4.

Subawards/Consortium/Contractual Costs5.

Equipment or Facility Rental/User Fees6.

Alterations and Renovations7.

8.

9.

10.

Total Other Direct Costs

G. Direct Costs

Total Direct Costs (A thru F)

H. Indirect Costs Indirect Cost 
Rate (%)

Indirect Cost 
Base ($)

1.

2.

3.

4.

Cognizant Federal Agency

I. Total Direct and Indirect Costs
Total Direct and Indirect Institutional Costs (G + H)

J. Fee

K. * Budget Justification

Indirect Cost Type

Funds Requested ($)

Funds Requested ($)

* Funds Requested ($)

Funds Requested ($)

Funds Requested ($)

RESEARCH & RELATED Budget {F-K} (Funds Requested)

Total Indirect Costs

(Only attach one file.)

(Agency Name, POC Name, and POC Phone Number)

COST_ELEMENT_SUMMARY_4_17_121017029068

403.00

61.00

112,500.00

5,000.00Computer & Computing Supplies

117,964.00

160,552.00

39,448.00

200,000.00

39,448.00Research On Campus

RESEARCH & RELATED BUDGET - SECTION F-K, BUDGET PERIOD 1

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

* ORGANIZATIONAL DUNS:

Project Subaward/Consortium

0925303690000

09/30/201206/01/2012

Regents of the University of Ca

Budget Period

Add Attachment Delete Attachment View Attachment

Next Period

Delete Entry

(b)(4)

(b) (6)



* Last Name

RESEARCH & RELATED BUDGET - SECTION A & B, BUDGET PERIOD 2

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

* Project Role Base Salary ($)
* Fringe 

Benefits ($) * Funds Requested ($)

9.

8.

7.

6.

5.

4.

3.

2.

1.

Total Funds requested for all Senior Key Persons in the attached file
Total Senior/Key Person

Additional Senior Key Persons:

B. Other Personnel

A. Senior/Key Person

* Number of  
Personnel * Project Role

Acad.  
Months

Sum. 
Months

* Requested 
Salary ($)

Cal. 
Months

Post Doctoral Associates

Graduate Students

Undergraduate Students

Secretarial/Clerical

Total Number Other Personnel Total Other Personnel

Total Salary, Wages and Fringe Benefits (A+B)

Prefix * First Name Middle Name Suffix

* Fringe 
Benefits ($) * Funds Requested ($)

Acad.  
Months

Sum. 
Months

* Requested 
Salary ($)

Cal. 
Months

RESEARCH & RELATED Budget {A-B} (Funds Requested)

* ORGANIZATIONAL DUNS:

OMB Number: 4040-0001 
Expiration Date: 06/30/2011

0925303690000

Project Subaward/Consortium

1

Delete Entry

Dr. Stanley Osher PD/PI 1.00

Dr. Andrea Bertozzi Co-PD/PI 0.50

9.00 3.00

71,276.00

Regents of the University of Ca

1

10/01/2012 09/30/2013 Budget Period 

View AttachmentDelete AttachmentAdd Attachment

Previous Period

2

(b)(4) (b)(4)

(b)(4)

(b) (4)

(b) (4)



C. Equipment Description

List items and dollar amount for each item exceeding $5,000

Equipment item * Funds Requested ($)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Total funds requested for all equipment listed in the attached file11.

D. Travel

Domestic Travel Costs ( Incl. Canada, Mexico and U.S. Possessions)1.

Foreign Travel Costs2.

Total Travel Cost

Total Equipment

E. Participant/Trainee Support Costs

Tuition/Fees/Health Insurance1.

Stipends2.

Travel3.

Subsistence4.

Other5.

Number of Participants/Trainees Total Participant/Trainee Support Costs

Funds Requested ($)

Funds Requested ($)

RESEARCH & RELATED Budget {C-E} (Funds Requested)

RESEARCH & RELATED BUDGET - SECTION C, D, & E, BUDGET PERIOD  2

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

Additional Equipment:

* ORGANIZATIONAL DUNS:

Project Subaward/Consortium

0925303690000

09/30/201310/01/2012

2,603.00

2,602.00

5,205.00

Regents of the University of Ca

View AttachmentDelete AttachmentAdd Attachment

Budget Period 2Delete Entry



F. Other Direct Costs

Materials and Supplies1.

Publication Costs2.

Consultant Services3.

ADP/Computer Services4.

Subawards/Consortium/Contractual Costs5.

Equipment or Facility Rental/User Fees6.

Alterations and Renovations7.

8.

9.

10.

Total Other Direct Costs

G. Direct Costs

Total Direct Costs (A thru F)

H. Indirect Costs Indirect Cost 
Rate (%)

Indirect Cost 
Base ($)

1.

2.

3.

4.

Cognizant Federal Agency

I. Total Direct and Indirect Costs
Total Direct and Indirect Institutional Costs (G + H)

J. Fee

K. * Budget Justification

Indirect Cost Type

Funds Requested ($)

Funds Requested ($)

* Funds Requested ($)

Funds Requested ($)

Funds Requested ($)

RESEARCH & RELATED Budget {F-K} (Funds Requested)

Total Indirect Costs

(Only attach one file.)

(Agency Name, POC Name, and POC Phone Number)

COST_ELEMENT_SUMMARY_4_17_121017029068

Grad Fees & NRT

Computing

180,010.00

256,491.00

43,508.00

299,999.00

43,508.00Research On Campus

RESEARCH & RELATED BUDGET - SECTION F-K, BUDGET PERIOD 2

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

* ORGANIZATIONAL DUNS:

Project Subaward/Consortium

0925303690000

09/30/201310/01/2012

Regents of the University of Ca

Budget Period 2

Add Attachment Delete Attachment View Attachment

Next Period

Delete Entry

(b)(4)

(b) (4)

(b) (4) (b) (4)



* Last Name

RESEARCH & RELATED BUDGET - SECTION A & B, BUDGET PERIOD 3

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

* Project Role Base Salary ($)
* Fringe 

Benefits ($) * Funds Requested ($)

9.

8.

7.

6.

5.

4.

3.

2.

1.

Total Funds requested for all Senior Key Persons in the attached file
Total Senior/Key Person

Additional Senior Key Persons:

B. Other Personnel

A. Senior/Key Person

* Number of  
Personnel * Project Role

Acad.  
Months

Sum. 
Months

* Requested 
Salary ($)

Cal. 
Months

Post Doctoral Associates

Graduate Students

Undergraduate Students

Secretarial/Clerical

Total Number Other Personnel Total Other Personnel

Total Salary, Wages and Fringe Benefits (A+B)

Prefix * First Name Middle Name Suffix

* Fringe 
Benefits ($) * Funds Requested ($)

Acad.  
Months

Sum. 
Months

* Requested 
Salary ($)

Cal. 
Months

RESEARCH & RELATED Budget {A-B} (Funds Requested)

* ORGANIZATIONAL DUNS:

OMB Number: 4040-0001 
Expiration Date: 06/30/2011

0925303690000

Project Subaward/Consortium

2

Delete Entry

Dr. Stanley Osher PD/PI 1.00

Dr. Andrea Bertozzi Co-PD/PI 0.50

9.00 3.00

80,594.00

Regents of the University of Ca

2

10/01/2013 09/30/2014 Budget Period 

View AttachmentDelete AttachmentAdd Attachment

Previous Period

3

(b)(4) (b)(4)

(b)(4)

(b) (4)

(b) (4)



C. Equipment Description

List items and dollar amount for each item exceeding $5,000

Equipment item * Funds Requested ($)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Total funds requested for all equipment listed in the attached file11.

D. Travel

Domestic Travel Costs ( Incl. Canada, Mexico and U.S. Possessions)1.

Foreign Travel Costs2.

Total Travel Cost

Total Equipment

E. Participant/Trainee Support Costs

Tuition/Fees/Health Insurance1.

Stipends2.

Travel3.

Subsistence4.

Other5.

Number of Participants/Trainees Total Participant/Trainee Support Costs

Funds Requested ($)

Funds Requested ($)

RESEARCH & RELATED Budget {C-E} (Funds Requested)

RESEARCH & RELATED BUDGET - SECTION C, D, & E, BUDGET PERIOD  3

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

Additional Equipment:

* ORGANIZATIONAL DUNS:

Project Subaward/Consortium

0925303690000

09/30/201410/01/2013

2,627.00

2,627.00

5,254.00

Regents of the University of Ca

View AttachmentDelete AttachmentAdd Attachment

Budget Period 3Delete Entry



F. Other Direct Costs

Materials and Supplies1.

Publication Costs2.

Consultant Services3.

ADP/Computer Services4.

Subawards/Consortium/Contractual Costs5.

Equipment or Facility Rental/User Fees6.

Alterations and Renovations7.

8.

9.

10.

Total Other Direct Costs

G. Direct Costs

Total Direct Costs (A thru F)

H. Indirect Costs Indirect Cost 
Rate (%)

Indirect Cost 
Base ($)

1.

2.

3.

4.

Cognizant Federal Agency

I. Total Direct and Indirect Costs
Total Direct and Indirect Institutional Costs (G + H)

J. Fee

K. * Budget Justification

Indirect Cost Type

Funds Requested ($)

Funds Requested ($)

* Funds Requested ($)

Funds Requested ($)

Funds Requested ($)

RESEARCH & RELATED Budget {F-K} (Funds Requested)

Total Indirect Costs

(Only attach one file.)

(Agency Name, POC Name, and POC Phone Number)

COST_ELEMENT_SUMMARY_4_17_121017029068

Grad Fees & NRT

167,206.00

253,054.00

46,947.00

300,001.00

46,947.00Research On Campus

RESEARCH & RELATED BUDGET - SECTION F-K, BUDGET PERIOD 3

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

* ORGANIZATIONAL DUNS:

Project Subaward/Consortium

0925303690000

09/30/201410/01/2013

Regents of the University of Ca

Budget Period 3

Add Attachment Delete Attachment View Attachment

Next Period

Delete Entry

(b)(4)

(b)(4)

(b) (4) (b) (4)



* Last Name

RESEARCH & RELATED BUDGET - SECTION A & B, BUDGET PERIOD 4

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

* Project Role Base Salary ($)
* Fringe 

Benefits ($) * Funds Requested ($)

9.

8.

7.

6.

5.

4.

3.

2.

1.

Total Funds requested for all Senior Key Persons in the attached file
Total Senior/Key Person

Additional Senior Key Persons:

B. Other Personnel

A. Senior/Key Person

* Number of  
Personnel * Project Role

Acad.  
Months

Sum. 
Months

* Requested 
Salary ($)

Cal. 
Months

Post Doctoral Associates

Graduate Students

Undergraduate Students

Secretarial/Clerical

Total Number Other Personnel Total Other Personnel

Total Salary, Wages and Fringe Benefits (A+B)

Prefix * First Name Middle Name Suffix

* Fringe 
Benefits ($) * Funds Requested ($)

Acad.  
Months

Sum. 
Months

* Requested 
Salary ($)

Cal. 
Months

RESEARCH & RELATED Budget {A-B} (Funds Requested)

* ORGANIZATIONAL DUNS:

OMB Number: 4040-0001 
Expiration Date: 06/30/2011

0925303690000

Project Subaward/Consortium

4

Delete Entry

Dr. Stanley Osher PD/PI 0.00 0.00 0.00

Dr. Andrea Bertozzi Co-PD/PI 0.50

3.00

42,480.00

Regents of the University of Ca

4

10/01/2014 05/31/2015 Budget Period 

View AttachmentDelete AttachmentAdd Attachment

Previous Period

4

(b)(4)
(b)(4)

(b)(4)

(b)(4)

(b) (4)



C. Equipment Description

List items and dollar amount for each item exceeding $5,000

Equipment item * Funds Requested ($)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Total funds requested for all equipment listed in the attached file11.

D. Travel

Domestic Travel Costs ( Incl. Canada, Mexico and U.S. Possessions)1.

Foreign Travel Costs2.

Total Travel Cost

Total Equipment

E. Participant/Trainee Support Costs

Tuition/Fees/Health Insurance1.

Stipends2.

Travel3.

Subsistence4.

Other5.

Number of Participants/Trainees Total Participant/Trainee Support Costs

Funds Requested ($)

Funds Requested ($)

RESEARCH & RELATED Budget {C-E} (Funds Requested)

RESEARCH & RELATED BUDGET - SECTION C, D, & E, BUDGET PERIOD  

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

Additional Equipment:

* ORGANIZATIONAL DUNS:

Project Subaward/Consortium

0925303690000

05/31/201510/01/2014

1,739.00

1,739.00

3,478.00

Regents of the University of Ca

View AttachmentDelete AttachmentAdd Attachment

Budget Period 4Delete Entry



F. Other Direct Costs

Materials and Supplies1.

Publication Costs2.

Consultant Services3.

ADP/Computer Services4.

Subawards/Consortium/Contractual Costs5.

Equipment or Facility Rental/User Fees6.

Alterations and Renovations7.

8.

9.

10.

Total Other Direct Costs

G. Direct Costs

Total Direct Costs (A thru F)

H. Indirect Costs Indirect Cost 
Rate (%)

Indirect Cost 
Base ($)

1.

2.

3.

4.

Cognizant Federal Agency

I. Total Direct and Indirect Costs
Total Direct and Indirect Institutional Costs (G + H)

J. Fee

K. * Budget Justification

Indirect Cost Type

Funds Requested ($)

Funds Requested ($)

* Funds Requested ($)

Funds Requested ($)

Funds Requested ($)

RESEARCH & RELATED Budget {F-K} (Funds Requested)

Total Indirect Costs

(Only attach one file.)

(Agency Name, POC Name, and POC Phone Number)

COST_ELEMENT_SUMMARY_4_17_121017029068

Grad Fees & NRT

128,635.00

174,593.00

25,406.00

199,999.00

25,406.00Research On Campus

RESEARCH & RELATED BUDGET - SECTION F-K, BUDGET PERIOD 4

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

* ORGANIZATIONAL DUNS:

Project Subaward/Consortium

0925303690000

05/31/201510/01/2014

Regents of the University of Ca

Budget Period 4

Add Attachment Delete Attachment View Attachment

Next Period

Delete Entry

(b)(4)

(b)(4)

(b) (4) (b) (4)



* Last Name

RESEARCH & RELATED BUDGET - SECTION A & B, BUDGET PERIOD 5

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

* Project Role Base Salary ($)
* Fringe 

Benefits ($) * Funds Requested ($)

9.

8.

7.

6.

5.

4.

3.

2.

1.

Total Funds requested for all Senior Key Persons in the attached file
Total Senior/Key Person

Additional Senior Key Persons:

B. Other Personnel

A. Senior/Key Person

* Number of  
Personnel * Project Role

Acad.  
Months

Sum. 
Months

* Requested 
Salary ($)

Cal. 
Months

Post Doctoral Associates

Graduate Students

Undergraduate Students

Secretarial/Clerical

Total Number Other Personnel Total Other Personnel

Total Salary, Wages and Fringe Benefits (A+B)

Prefix * First Name Middle Name Suffix

* Fringe 
Benefits ($) * Funds Requested ($)

Acad.  
Months

Sum. 
Months

* Requested 
Salary ($)

Cal. 
Months

RESEARCH & RELATED Budget {A-B} (Funds Requested)

* ORGANIZATIONAL DUNS:

OMB Number: 4040-0001 
Expiration Date: 06/30/2011

0925303690000

Project Subaward/Consortium

1

Delete Entry

Dr. Stanley Osher PD/PI 2.00

Dr. Andrea Bertozzi Co-PD/PI 2.00

9.00 3.00

164,737.00

Regents of the University of Ca

1

06/01/2015 05/31/2017 Budget Period 

View AttachmentDelete AttachmentAdd Attachment

Previous Period

5

(b)(4) (b)(4)

(b)(4)

(b)(4)

(b) (4)



C. Equipment Description

List items and dollar amount for each item exceeding $5,000

Equipment item * Funds Requested ($)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Total funds requested for all equipment listed in the attached file11.

D. Travel

Domestic Travel Costs ( Incl. Canada, Mexico and U.S. Possessions)1.

Foreign Travel Costs2.

Total Travel Cost

Total Equipment

E. Participant/Trainee Support Costs

Tuition/Fees/Health Insurance1.

Stipends2.

Travel3.

Subsistence4.

Other5.

Number of Participants/Trainees Total Participant/Trainee Support Costs

Funds Requested ($)

Funds Requested ($)

RESEARCH & RELATED Budget {C-E} (Funds Requested)

RESEARCH & RELATED BUDGET - SECTION C, D, & E, BUDGET PERIOD  5

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

Additional Equipment:

* ORGANIZATIONAL DUNS:

Project Subaward/Consortium

0925303690000

05/31/201706/01/2015

5,725.00

5,724.00

11,449.00

Regents of the University of Ca

View AttachmentDelete AttachmentAdd Attachment

Budget Period 5Delete Entry



F. Other Direct Costs

Materials and Supplies1.

Publication Costs2.

Consultant Services3.

ADP/Computer Services4.

Subawards/Consortium/Contractual Costs5.

Equipment or Facility Rental/User Fees6.

Alterations and Renovations7.

8.

9.

10.

Total Other Direct Costs

G. Direct Costs

Total Direct Costs (A thru F)

H. Indirect Costs Indirect Cost 
Rate (%)

Indirect Cost 
Base ($)

1.

2.

3.

4.

Cognizant Federal Agency

I. Total Direct and Indirect Costs
Total Direct and Indirect Institutional Costs (G + H)

J. Fee

K. * Budget Justification

Indirect Cost Type

Funds Requested ($)

Funds Requested ($)

* Funds Requested ($)

Funds Requested ($)

Funds Requested ($)

RESEARCH & RELATED Budget {F-K} (Funds Requested)

Total Indirect Costs

(Only attach one file.)

(Agency Name, POC Name, and POC Phone Number)
DHHS, Wallace Chan, 415-437-7820

COST_ELEMENT_SUMMARY_4_17_121017029068

Grad Fees & NRT

314,006.00

490,192.00

109,807.00

599,999.00

109,807.00Research On Campus

RESEARCH & RELATED BUDGET - SECTION F-K, BUDGET PERIOD 5

* Budget Type:

Enter name of Organization:

* Start Date: * End Date:

* ORGANIZATIONAL DUNS:

Project Subaward/Consortium

0925303690000

05/31/201706/01/2015

Regents of the University of Ca

Budget Period 5

Add Attachment Delete Attachment View Attachment

Delete Entry

(b)(4)

(b) (4) (b) (4)



Section A, Senior/Key Person

Section C, Equipment

RESEARCH & RELATED BUDGET - Cumulative Budget

Section D, Travel

Domestic

Section E, Participant/Trainee Support Costs

Foreign

Tuition/Fees/Health Insurance

Stipends

Travel

Subsistence

Other

Number of Participants/Trainees

1.

2.

3.

4.

5.

6.

1.

2.

Section F, Other Direct Costs

Materials and Supplies1.

Publication Costs2.

Consultant Services3.

ADP/Computer Services4.

Subawards/Consortium/Contractual Costs5.

Equipment or Facility Rental/User Fees6.

Alterations and Renovations7.

8.

9.

10.

Totals ($)

Total Number Other Personnel

Total Salary, Wages and Fringe Benefits (A+B)

Other 1

Other 2

Other 3

Section B, Other Personnel

Section J, Fee
Section I, Total Direct and Indirect Costs (G + H)

Section H, Indirect Costs

Section G, Direct Costs (A thru F)

13

13,944.00

13,942.00

907,821.00

4,993.00

901.00

800,000.00

98,927.00

3,000.00

(b)(4)

(b)(4)



Cost Proposal 
ONR BAA 11-001 

 
Proposal Title: Machine Reasoning and Intelligence for Naval Sensing 

 
Submitted by: 

Stanley Osher (PI) and Andrea Bertozzi (co-PI) 
UCLA 

Department of Mathematics 
520 Portola Plaza 

6363 Math Sciences Building 
Los Angeles, CA 90095-155 

 
Phone: 310-825-4701 
Fax: 310-206-2679 

Email:{sjo, bertozzi}@math.ucla.edu 
 

Subaward to: 
 

Lawrence Carin (co-PI) 
Department of Electrical and Computer Engineering 
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Durham, NC 

Email: lcarin@duke.edu 

 
 

Administrative POC: Evan Garcia 
Grant Analyst 

UCLA 
Office of Contracts and Grants 
11000 Kinross Bldg. Ste 102 

Los Angeles, CA 90095 
 

Phone: 310-794-0171 
Fax: 310-943-1656 

Email: ocga3@research.ucla.edu 
 
 

Time Period: 
 

36 months, $300K/yr; Two additional years $300K/yr 
Proposed start date: 1 June 2012 

 



COST ELEMENT SUMMARY 
 

Phase 1 

COST ELEMENT BASE RATE AMOUNT 

DIRECT LABOR 
Senior Personnel: 
Other Personnel: 

TOTAL DIRECT LABOR 

FRINGE BENEFITS 

TOTAL LABOR OVERHEAD 

SUBCONTRACTOR(S) 
 

MATERIALS & EQUIPMENT 

MATERIAL OVERHEAD 

TRAVEL 

OTHER DIRECT COSTS (ODC) 

General and Administrative (G&A) 
Independent Research and 
Development (IR&D)/Bid and 
Proposal (B&P) $ % $0.00 
SUBTOTAL COSTS     $1,000,000 
COST OF MONEY (See DD Form 
1861)     $0.00 
TOTAL COST     $1,000,000 
PROFIT/FEE $0.00 0% $0.00 
TOTAL PRICE/COST     $1,000,000 
GOVERNMENT SHARE     $0.00 
RECIPIENT SHARE (if 
applicable)     $0.00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)(4)



Additional Years 

COST ELEMENT BASE RATE AMOUNT 

DIRECT LABOR 
Senior Personnel: 
Other Personnel: 

TOTAL DIRECT LABOR 

FRINGE BENEFITS 

TOTAL LABOR OVERHEAD 

SUBCONTRACTOR(S) 
 

MATERIALS & EQUIPMENT 

MATERIAL OVERHEAD 

TRAVEL 

OTHER DIRECT COSTS (ODC) 

General and Administrative (G&A) 
Independent Research and 
Development (IR&D)/Bid and 
Proposal (B&P) $ % $0.00 
SUBTOTAL COSTS     $600,000 
COST OF MONEY (See DD Form 
1861)     $0.00 
TOTAL COST     $600,000 
PROFIT/FEE $0.00 0% $0.00 
TOTAL PRICE/COST     $600,000 
GOVERNMENT SHARE     $0.00 
RECIPIENT SHARE (if 
applicable)     $0.00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)(4)



DETAILED COSTS: 
 

 

06/01/12 
thru 

09/30/12 

10/01/12 
thru 

09/30/13 

10/01/13 
thru 

09/30/14 

10/01/14 
thru 

05/31/15 TOTAL 
 Senior Personnel      
1. Osher, Stan (Summer) $0 $0  
2. Bertozzi, Andrea (AY) $0  
Total Senior Personnel $0  
     
Other Personnel      
1. Postdoc $0 $0 $0   
2. Graduate Student   

Total Salaries  
    
Fringe Benefits      
 Faculty- Summer Yr $0  $0  
 Faculty- Academic Yr $0    
 Postdoc  $0 $0   
 Student-Summer    $0  
 Student-Academic Yr $0     
 Non Resident Tuition (NRT) $0  $0    

 Fee Remission $0  
Fringe Benefits  
Total Salaries, Benefits  
     
Travel $2,500 $5,206 $5,254 $3,478 $16,438 
      
Other Direct Costs      
1. Materials & Supplies    
2. Publication Costs    
3. Equipment items less than $5K  $0 $0   
4. Subaward to Duke  
Total Other Costs   
  
Total Direct Costs 
  
Indirect Costs 
     
Total Costs $200,000 $300,000 $300,000 $200,000 $1,000,000 
      

 
 
 
 
 
 
 
 

(b)(4)
(b)(4)

(b)(4)
(b)(4) (b)(4) (b)(4)

(b)(4)

(b)(4)

(b)(4)

(b)(4)

(b)(4)

(b)(4)

(b)(4)

(b)(4)
(b)(4)(b)(4)

(b)(4) (b)(4) (b)(4)

(b)(4)

(b)(4)

(b)(4)

(b)(4)

(
b
) 
(
4
)

(b) (4)

(b) (4)
(b) (4)

(b) (4)
(b) (4)

(b) (4)

(b) (4)

(b) (4)
(b) (4)

(b) 
(4)

(b) 
(4)

(b) (4)

(b) (4)

(b) (4)

(b) (4)

(b) (4)

(b) (4)

(b) 
(4)

(b) (4)
(b) (4)



 
DETAILED COST ADDITIONAL YEARS 
 

 

06/01/15 
thru 

09/30/15 

10/01/15 
thru 

09/30/16 

10/01/16 
thru 

05/31/17 TOTAL 
 Senior Personnel     
1. Osher, Stan (Summer) $0  
2. Bertozzi, Andrea (AY) $0  
Total Senior Personnel  
    
Other Personnel     
1. Graduate Student  $0  

Total Salaries   
    
Fringe Benefits     
 Faculty- Summer Yr  $0  
 Faculty- Academic Yr $0    
 Student-Summer $0  
 Student-Academic Yr $0  $0  
 Non Resident Tuition (NRT) $0 $0 $0  $0 

 Fee Remission $0  $0  
Fringe Benefits    
Total Salaries, Benefits  
     
Travel   
    
Other Direct Costs     
1. Materials & Supplies  
2. Publication Costs  
3. Equipment items less than $5K $0 $0 $0 $0 
4. Subaward to Duke  
Total Other Costs   
   
Total Direct Costs  
   
Indirect Costs  
     
Total Costs $175,000 $300,000 $125,000 $600000 
     

 
 
 
 
 
 
 
 

(b)(4)

(b)(4)

(b)(4)
(b)(4)

(b)(4)
(b)(4)

(b)(4)

(b)(4)
(b)(4)

(b)(4)

(b)(4)

(b)(4)
(b)(4)

(b)(4)

(b)(4)

(b)(4)

(b)(4)

(b)(4)

(b) (4)

(b) (4)

(b) (4)

(b) (4)

(b) (4)

(b) (4)

(b) (4)

(b) 
(4)(b) 
(4)

(b) (4)

(b) (4)

(b) (4)

(b) (4)

(b) (4)

(b) 
(4)

(b) (4)
(b) (4)

(b) (4)

(b) (4)



Budget Justification 
 

SALARY AND WAGES 
Salaries and wages have been calculated on the basis of the University of California Academic 
Salary Schedule and the Staff Personnel Manual Title and Pay Plan for fiscal year 2012-2013.  
We are projecting a 5% salary increase per year for PI and Co-Pi’s, then we are projecting a 2% 
salary increase per year for remaining personnel for PostDocs and Student Researchers.  The PI 
will be responsible for the overall coordination of the project and the supervision of the graduate 
students. 
 

 06/01/12-09/30/12 10/1/12-09/30/13 10/01/13-09/30/14 10/01/14-05/31/15 
Stanley Osher 

Starting 
salary: 

 
No Salary 

100% effort, 
1.0 mth Summer 

salary  

100% effort, 
1.0 mth Summer 

salary 
No Salary 

Bertozzi 
Starting 
salary: 

 
 

No Salary 
50% effort, 

.5 mth academic 
salary  

50% effort, 
.5 mth academic 

salary 

50% effort, 
.5 mth academic 

salary 

 

 06/01/15-09/30/15 10/1/15-09/30/16 10/01/16-05/31/17 
Stanley Osher 

Starting 
salary: 

 
100% effort, 

1.0 mth 
Summer salary 

100% effort, 
1.0 mth Summer 

salary  
No Salary 

Andrea 
Bertozzi 
Starting 
salary: 

 
 

No Salary 
100% effort, 

1.0 mth academic 
salary  

100% effort, 
1.0 mth academic 

salary 

 

 06/01/12-09/30/12 10/1/12-09/30/13 10/01/13-09/30/14 10/01/14-05/31/15 
 

       Postdoc 
Starting salary: 

 
2 Postdocs  

54% for 3 mths 

 
No Salary 

 
No Salary 

 
No Salary 

 
         GSR 
Starting salary: 

 3 students 50% 
during summer 

months 

1 student 
50% during 

academic, then 1 
student 50% 

during summer 
months  

1 student 
50% during 

academic, then 2 
students 50% 

summer months  
 

 
4 students 

50% during Fall 
Qtr academic  

 

 06/01/15-09/30/15 10/1/15-09/30/16 10/01/16-05/31/17 
 

         GSR 
Starting salary: 

 
 1 student 75% 
during summer 

months 

1 student 50% during 
academic for two qtrs 
, then 1 student 50% 

during summer  

 
 

No Salary 
 

(b)(4)

(b)(4)

(b)(4)

(b)(4)

(b)(4)

(b)(4)

(b)(4)



B
   

ENEFITS 

  Fringe benefits are calculated according to the following rates: 
             Faculty:         (academic)                
                                                                                                    (summer)                  
             Postdoc:          (academic)                
             Graduate Student Researchers:                                     (academic)                 
                                                                                                   (summer)                    
 TRAVEL 
   
  Funds will be used to reimburse the Principal Investigator, Co-Principal Investigators and   
  graduate students affiliated with the project, for the actual cost of research related travel to  
  attend the regular group meetings, and also conferences and workshops related to the theme of  
  the project. Some of the funds may be used to pay for the actual travel expenses of the visitors    
  to the group.  Travel will be at various conferences worldwide, locations to be determined at a  
  later date.  Rates for travel are based off historical data. 
 

  SUPPLIES AND EXPENSES 
   
  1. MATERIALS AND SUPPLIES 

These funds will be used to purchase goods and services necessary to conduct the 
research pricing based on historical data.  These funds will also be used to cover the 
campus mandated Technology Infrastructure Fee (TIF) of $41.58/month per employee 
for each employee supported by this proposed grant. 

 

   2. PUBLICATION COSTS/DOCUMENTATION/DISSEMINATION 
Funds will be used for publication costs may include artwork, page charges, reprints, 
postage, and photocopying.  (Postage and photocopying are requested to fund duplication 
and mail of reprints of grant publications and related research documents to requesters.) 

   
   3. COMPUTER/COMPUTING EQUIPMENT 

  In the Period 1 and 2 of the budget we are requesting funds for laptop, desktop computer  
  and computing supplies pricing based on historical data. 

 

   SUBAWARDS 
 

   Subaward to Dr. Lawrence Carin of Duke University for a total of $500,000.  Please see  
   attached budget.            
 

   OTHER 
          

   Graduate Student the required fee remission of  for three quarters for one student and  
    the Non-Resident Tuition for two quarters for one student in Budget Period 2 and for three  
    quarters in Period 4.  With a 5% inflation a year.  Rates can be found at  
    www.gdnet.ucla.edu/gss/library/1112gradfees.pdf. 
    
   FACILITIES AND ADMINISTRATIVE COST RATES 
    MTDC (excluding fee remission, non-resident tuition and Participant Support).  Our  
   rates were approved by U.S.D.H.H.S. (the responsible Federal audit agency) on April 27, 2011.    

(b) (4)

(b) (4)

(b) (4)

(b) (4)

(b) (4)

(b) (4)

(b) (4)



Name (PI) Carin, Duke University
Start date:  06/01/12
End date:  05/31/17

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Total 
6/1/2012 - 09/30/2012 10/1/2012-09/30/13 10/1/13 - 09/30/14 10/1/14 - 05/31/15 6/1/15 - 09/30/15 10/1/15 - 09/30/16 10/1/16 - 05/31/17 6/1/12 - 5/31/17

6 mos 12 mos 12 mos 8 mos 4 mos 12 mos 8 mos
Salaries
  PI L. Carin
Labor Rate
Labor Hours
Post Doctoral Associate PD
Labor Rate
Labor Hours
Graduate Research Assistant Grad RA
Labor Rate
Labor Hours
Total
 PI Fringe benefits 
Post Doc Fringe  
PhD Fringe benefits 
Total Salaries
Travel
Tuition Remission
Modified Direct Costs
Total Direct Costs
Indirect )
Total Project Costs $112,500 $150,000 $150,000 $87,500 $87,500 $150,000 $62,500 $800,000

4/17/2012

(b) 
(4)

(b) (4)
(b) (4)

(b) (4)

(b) 
(4)

(b) (4)

(b) (4)

(b) (4)(b) (4)



Research Staff. Prof. Lawrence Carin, serving as the Principal Investigator (PI), will 
oversee and direct the proposed research and coordinate the results and direction of the 
program with the sponsor.  The full-time equivalent of 1.0 month’s salary in years one 
through three Base Period and in years four and five Option Period are requested for the 
PI’s support.  
 
The PI will be supported by one Postdoctoral Associate and one Graduate Student 
Research Assistant.  The Postdoc will provide 3.05 months in year one, 5.64 months in 
year two, 6.20 months in year three, 3.40 months in year four and 3.2 months in year five. 
The Postdoc will do the computer programming for modeling, simulations, and modeling 
effectiveness evaluation. The Graduate Research Assistant will develop nonparametric 
Bayesian methods for analysis of general acoustic sensing data at 100% level of effort 
each year.  
 
The basis of the labor rate for Dr. Carin is the Institutional Base Salary (IBS, aka 
Academic Year or nine-month salary) as set annually by the Dean of Pratt School of 
Engineering and as approved by the Office of the Provost.  For Duke’s fiscal year 
beginning July 1, 2011, Dr. Carin’s IBS will be   The following years are 
projected on a basis of a 3% increase per year. 
 
The basis of the labor rates for the Postdoctoral Assistant is the amount specified in the 
respective appointment letter, which is negotiated annually between the individual and 
the faculty advisor considering education, experience, and skills, and as approved by the 
Chair of Electrical and Computer Engineering.  For Year 1, the annual salary level for the 
Research Scientist is projected to be .  The following years are projected on the 
basis of a 3% increase per year. 
 
The basis of the labor rate for graduate student Research Assistant (RA) is the minimum 
salary levels for Research Assistants as set by the Office of the Dean in the Pratt School 
of Engineering, and as adjusted by Electrical and Computer Engineering (ECE) 
Department policy.  All support for RAs at Duke University is paid as wages as required 
by federal regulations and is treated like all other University wages with the ones 
exception that lower fringe benefit rates are assessed.  For Duke’s fiscal year beginning 
July 1, 2010, the twelve month compensation level for RAs in ECE is projected to be 

  for years one and two with a 3% increase projected in year three of the project. 
 
All of the proposed research staff are paid on a monthly basis and are FLSA-exempt 
employees.  The proposed levels of effort and mixes of labor types are based on prior 
experience with projects of similar scope and comparable complexity. 
 
Fringe Benefits.  Duke University’s projected fringe benefit rates applicable to the PI’s 
salary are  in year one and  in year two, and  in year three. 
 
For the Postdoctoral Associate, the fringe benefit rates are  in year one,  in 
year two, and  in year three. 
 

(b) (4)

(b) (4)

(b) (4)

(b) (4) (b) (4)(b) (4) (b) 
(4)

(b) (4)

(b) (4) (b) (4)

(b) (4)



For the Graduate Research Assistant, the fringe benefit rates are  in year one, 
 in year two and  in year three. 

 
Travel costs.   Support is requested for the PI and/or Post doctoral Associate to travel to 
Arlington, VA or other designated locale for program reviews and technical meetings as 
needed.   
 
For each trip to Arlington, VA, $158 is estimated for the air fare (per person); $78 (x1), 
rental car; $10 (x1), parking; $17.00 (per person), local mileage; $71/day x 1.0 days/trip 
(per person), per diem; total, approximately $334/person. Two, one-day trips are planned 
for the PI and one, one-day trip is planned for the Postdoctoral Associate each year.  
 
For each trip to Los Angeles, California, $358 is estimated for the airfare (per person); 
$78 (X3) rental car; $10 (X3), parking; $17.00 (per person), local mileage; $123 (x2), 
lodging; $71 (X3), per diem; approximately $1,098/person. One, three day trip is planned 
for the PI to Los Angeles California each year. 
 
Tuition Remission-IDC Exempt.  For the 2010-2011 academic year, tuition remission is 
set at  each semester. These rates are set by the Graduate School and are applied 
consistently across the University, regardless of funding source.  Amounts for subsequent 
academic years are projected to increase 4% each year.  The amount that will be incurred 
during the applicable academic terms in proposed periods of performance will be  
in year one,  in year two, and  in year three. 
 
Facilities and Administrative (F&A) costs.   The DHHS federally negotiated Facilities 
and Administrative (F&A) cost rate is used.  Indirect costs for an on-campus research 
project are charged at Duke University’s negotiated rate of  of modified total direct 
costs (MTDC), equal to total direct costs minus capital equipment costs, student tuition 
remission, patient care costs, rental costs of off-site facilities, and subaward costs above 
the first  of each individual subaward. 
 

(b) (4)

(b) (4) (b) (4)(b) (4)

(b) (4)

(b) (4)

(b) (4) (b) (4)

(b) (4)

(b) (4)



1. * Are Human Subjects Involved?

IRB Approval Date:

Human Subject Assurance Number:

2. * Are Vertebrate Animals Used?

IACUC Approval Date:

Animal Welfare Assurance Number

4.b. If yes, please explain:

4.c. If this project has an actual or potential impact on the environment, has an exemption been authorized or an environmental assessment (EA) or  
       environmental impact statement (EIS) been performed?

4.d. If yes, please explain:

6. * Does this project involve activities outside of the United States or partnerships with international collaborators?

6.b. Optional Explanation:

7. * Project Summary/Abstract

11. Equipment

8. * Project Narrative

12. Other Attachments

RESEARCH & RELATED Other Project Information

Is the IACUC review Pending?

If no, is the IRB review Pending?

2.a. If YES to Vertebrate Animals

3. * Is proprietary/privileged information included in the application? 

4.a. * Does this project have an actual or potential impact on the environment? 
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9. Bibliography & References Cited
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Project Summary 

 
     A research program is proposed in which leading researchers from UCLA and Duke will 
team to address the problem of Machine Reasoning and Intelligence for Naval Sensing 
Applications. The proposed team, summarized in Fig. 1, brings together a set of skills 
that are singular in their own right, and integrated as proposed will leverage synergies 
to unify several emerging areas of applied mathematics and statistics for machine learning 
and intelligence. The proposed program has a statistical underpinning, enabling automated 
systems to provide multiple hypotheses that are (i) consistent with a mission; (ii) support 
the use of data that is uncertain, incomplete, imprecise, and contradictory (UIIC); (iii) 
provide a capability to suggest experiments or courses of action that disambiguate between 
hypotheses; (iv) identify data with appropriate data quality; and (v) represent UIIC data 
and support efficient computation as well as hypothesis formulation. 
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1 Future Naval Relevance

1.1 Program goals and objectives as they relate to the US Navy

A research program is proposed in which leading researchers from UCLA and Duke will
team to address the problem of Machine Reasoning and Intelligence for Naval Sensing
Applications. The proposed team, summarized in Fig. 1, brings together a set of skills
that are singular in their own right, and integrated as proposed will leverage synergies
to unify several emerging areas of applied mathematics and statistics for machine learning
and intelligence. The proposed program has a statistical underpinning, enabling automated
systems to provide multiple hypotheses that are (i) consistent with a mission; (ii) support
the use of data that is uncertain, incomplete, imprecise, and contradictory (UIIC); (iii)
provide a capability to suggest experiments or courses of action that disambiguate between
hypotheses; (iv) identify data with appropriate data quality; and (v) represent UIIC data
and support efficient computation as well as hypothesis formulation.

The proposed methods are statistical in nature, with analysis to be performed within
both an optimization and Bayesian setting. The former is typically a maximum a posterior
(MAP) representation of the latter, and this linkage will be leveraged within the proposed
program to unify what heretofore have been two distinct and independent research di-
rections. As an example of how such statistical constructs will be employed within the
proposed research, Prof. Bertozzi has recently made significant contributions on analyzing
space-time human behavior, of relevance to counter-insurgency and other modern military
activities (her work has focused on gang behavior in major cities). The graphical models
developed in that research are well suited for the nonparametric Bayesian models being
developed by Prof. Carin. Specifically, a new class of Bayesian models are being devel-
oped that explicitly leverage graphical information, for example in the form of geography
and time. Profs. Bertozzi and Carin have for example recently analyzed human behavior
(voting) within the US Congress [1], and these analyses explicitly impose graphical informa-
tion in the form of geographical locations between congressional districts, as well as time
evolution. Such analyses also naturally allow development of methods for incorporating
metadata, such as the party of the congressman, and the demographics of his/her congres-
sional district. Finally, we may use such data to investigate exploitation of HUMINT, here
in the form of documents characteristic of particular legislation.

Within the proposed program we will couple and unify the statistical methods devel-
oped independently by the UCLA and Duke team members. The proposed representations
will naturally include a characterization of uncertainty, incompleteness, and imprecision
in the data, enabling an understanding of these effects on downstream processing or con-
trol of these quantities. As indicated above, the proposed methods and representations
will be capable of being instantiated with data from single or multiple sensors as well as
unstructured data sources and HUMINT.

Building upon our ongoing research on analysis of unconventional data associated with
criminal behavior, while also relating such data to HUMINT (e.g., documents, histori-
cal records, and open-source information), we will develop new automated methods for
mission-relevant identification, discovery, and representation of relationships, intentions,
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Figure 1: The proposed team will integrate distinct and complementary tools to address the challenge of
machine reasoning and intelligence. Profs. Bertozzi and Carin will analyze unconventional sources of data,
including space-time patterns of human behavior, unstructured data, and HUMINT, while integrating such
with traditional sensor data. The graphical constructs developed by Prof. Bertozzi will be integrated as
nonparametric priors within the Bayesian formalisms of Prof. Carin. The latter methods will also quantify
the value of information, of importance for defining which new data should be acquired to refine inferences,
reduce uncertainty on models, and possibly spawn new models. Prof. Osher will constitute the foundation
of the proposed program, as his computational tools will make the proposed statistical algorithms tractable
for accurate machine reasoning. The Bregman optimization approaches will be integrated within the
statistical models developed by Profs. Bertozzi and Carin. We will also seek to connect optimization and
Bayesian approaches, with variational methods playing an important role. The unification of statistical,
Bayesian and optimization methods will be a fundamental product of the proposed program. Additionally,
Prof. Osher will develop new techniques for inferring the presence of anomalies in general space-time-
spectral data, extending ideas in robust PCA.

and objectives from unstructured open source data. These automated methods for a fixed
mission will support analysis of existing relationships, intentions, and objectives and syn-
thesis of new relationships, intentions, and objectives in the context of a mission, as well
as changes in relationships, intentions, and objectives.

A key driver of the proposed technology is that while the data may be inherently
high-dimensional, it typically may be represented in terms of models with low-dimensional
structure [1]. A unifying theme of the proposed research therefore concerns exploitation
of low-dimensional structure for representation and inference with high-dimensional data.
Means by which this low-dimensional structure will be inferred and leveraged include: (i)
reducing the quantity of data needed for learning, yielding robustness to noise, missing and
incomplete data, and contradictory information; (ii) the low-dimensional latent space is of-
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ten shared between different types of heterogeneous data, and therefore data with different
alphabets may be analyzed jointly by sharing latent structure; (iii) low-dimensional repre-
sentations such as low-rank models are ideal for inferences of anomalies, characterized by
data that are inconsistent with the low-dimensional subspace in which data typically reside
(e.g., robust-PCA [2, 3]); (iv) the low-dimensional representations may significantly accel-
erate computations with high-dimensional data, using methods such as stochastic gradients
[4], which we will here extend to Bayesian formalisms via variational Bayesian analysis.

The proposed strategies and techniques are naturally capable of autonomous reasoning
that leads to validation of an existing model, adapting an existing model, or synthesizing
a new model that is consistent with the data in the context of the mission. Specifically,
the proposed Dirichlet process [5] and beta process models [6] naturally adapt and refine
existing models as new data are acquired, updating the probability that particular models
are consistent with (potentially heterogeneous and contradictory) data observations. Fur-
ther, these models nonparametrically infer whether new models (hypotheses) should be
constituted (via the Dirichlet process) and whether new representational model features
are required (via the beta process). These automated reasoning methods are capable of
adapting the underlying models via concept drift, inferring which experiences from the past
are relevant to the present, and which are not. In addition to the Dirichlet and beta pro-
cesses, we will investigate new models that constitute power-law behavior (Pitman-Yor and
stable-beta processes) over space and time, of interest for analysis of rare but important
events.

We also propose a new class of computational architectures that support the research
efforts described above, and that will make inference fast. Specifically, we will build upon
Prof. Osher’s recent significant developments with Bregman-type methods, see e.g., [7,
8] and the references therein. We will employ these methods in the proposed machine
learning and statistical models. Of particular importance is the conversion of Bayesian
inference to optimization via variational Bayesian analysis. The Bregman methods will
provide a new and accurate means of performing such approximate Bayesian inference,
in the context of the sophisticated models discussed above. These statistical methods
allow one to rigorously compute measures such as risk, yielding explicit computation of
the value of information in the context of any given mission; these methods will quantify
where the available information is sufficient and of appropriate quality, sufficient but not
of appropriate quality, or insufficient to support reasoning with regard to potential targets.
Active-learning methods [9] will be investigated, these architectures explicitly capable of
supporting a human in the loop, reducing the burden on the analyst by guiding him/her
to the most informative data, while also allowing the algorithms to adapt to new data,
environments and missions. Submodular cost functions [10] will be investigated in the
context of such active learning, yielding performance guarantees on algorithm performance
and adaptivity. These methods will guide a human in the loop, and will also be used to
optimally perform sensor management in complex, uncertain and evolving environments,
defining experiments or courses of action for the autonomous agent.

The proposed team is highly experienced in working on Navy-relevant problems, and
in the proposed program the research will be focused and the likelihood of transitions
enhanced through close collaborations with Navy personnel. For example, the PIs have
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long-term, ongoing and close collaborations with personnel from China Lake, that will be
leveraged in the proposed effort. The PIs from UCLA and Duke will communicate regularly
via email and Skype, with frequent visits among the PIs, students and post docs at the two
institutions (e.g., students from Duke will spend a semester at UCLA, and vice-versa).

1.2 Navy Relevance, Outcomes, and Impacts

The Navy must increasingly engage in unconventional warfare, addressing challenges of
terrorism and counter-insurgency. In such missions accurate and timely interpretation of
complex information is often the most powerful tool for the warfighter; this must be exe-
cuted in the context of uncertain, incomplete, imprecise, and contradictory (UIIC) data.
In such a setting it is essential to integrate conventional sensor data with unconventional
information sources, many of which may be open-source, and are manifested in an uncon-
ventional “alphabet”. Specifically, unlike typical sensor data, unconventional information
sources may be in the form of actual words. The problem is further complicated by the
fact that the data are typically incomplete and contradictory, and inferences/actions must
account for risks and sensing costs.

The proposed research seeks to address these challenges using a new class of mathemat-
ics and statistics, developed independently at UCLA and Duke, and to be integrated and
unified within the proposed program. The proposed statistical methods from UCLA and
Duke will be coupled (Profs. Bertozzi and Carin), and the performance will be improved
using convex optimization techniques and convex splitting methods developed by Profs.
Osher and Bertozzi. The principal products from the proposed research will be in the form
of new mathematical and statistical models, which will be translated into algorithms and
software. The software will be delivered to Navy collaborators, where it will be tested
and refined based on relevant data. These collaborations will help sharpen and refine the
research questions in the proposed research.

If successful, the proposed research has the potential to significantly advance the Navy’s
ability to process complex, heterogeneous, and unconventional information sources. The
proposed framework will markedly enhance the realism of models for handling complex
information sources, moving beyond the assumption of simple Gaussian noise, addressing
non-Gaussian (e.g., spiky) noise and missing data. We will significantly advance a new class
of models that build upon ideas in robust-PCA, allowing automatic detection of anomalies
in general data, in the presence of significant missingness in the available data. As an ex-
ample, we will integrate ideas from robust-PCA [3] and topic modeling [11], to statistically
characterize the time evolution of the foreground and background in sophisticated video.

The proposed research is composed of three thrusts, each led by one of the investigators
on the team. While these thrusts will be led by one of the investigators, all tasks and
thrusts will be executed in concert, as a unified team. Further, we will work closely with
Navy personnel, such as those at China Lake with whom we have a close and long-term
relationship.
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2 Technical Approach and Justification

We shall use recently discovered techniques in information science, machine learning and
nonparametric Bayesian methods for developing robust representations, discovery of rela-
tionships and obtaining objectives from unstructured data. Then, we shall develop effective
adaptive computational methods that have a capability to react to a dynamically changing
picture, including feedback, with the goal of making good observations. These techniques
include nonlocal means combined with machine learning, `1 related optimization and sparse
reconstruction, dictionary learning and beta processes. These all address the issue of recon-
struction and analysis of incomplete high dimensional data with possible contradictions and
inaccuracies. Moreover, the Bayesian approach gives quantifiable probabilistic metrics. All
these techniques will combined to develop efficient, accurate, and flexible implementation
strategies. To repeat: the PI’s have a long and active history of collaboration with per-
sonnel from China Lake and other Navy laboratories. As a recent example, the turbulence
data used in [12] came from China Lake.

2.1 Thrust I: Accurate Inference and Low-Dimensional Repre-
sentations, leader S. Osher

Classification and Completion of Incomplete Information

In early work [13], Gilboa and Osher used a calculus from machine learning and weights
from nonlocal means [14], somewhat localized, to do inpainting, which means filling in
missing regions, classification and anomaly removal. This was done using nonlocal total
variation and `1 type minimization. The anomaly removal in Fig. 2 was done without any
prior knowledge and from using only a single image.

Figure 2: Removal of anomalies by nonlocal TV-`1 [13], which retains repetitive patterns
and removes rare and irregular ones (light and dark symbols).

Clearly, having a video or multiple images can be very useful additional information.
Merely stacking them vertically, missing data and all, gives us a matrix with missing entries.
This has naturally led to an exciting area of research called Robust Principal Component
Analysis [15]. Given a matrix which is the sum of a low-rank and a sparse component,
it is possible to recover each of them exactly by measuring a weighted combination of all
nuclear and `1 norms. This is true even if there are missing and/or corrupted elements. The
method of choice for these algorithms seems to be augmented Lagrangian, which is exactly
equivalent to split Bregman [16], in this case. This algorithm seems to be accurate and
more robust than competitive approaches. At UCLA, members of our group [7, 17] have
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developed a robust PCA algorithm for four dimensional computational tomography. This
involves a spatiotemporal model regarded as a mixture of a low rank and sparse matrix. The
low rank matrix corresponds to a stationary background, while the sparse matrix stands
for moving or changing components. This work cleverly replaces the `1 term by a better
regularizer. In [7], this group used tight framelets and in [17] (which did the decomposition
for space/energy rather than space/time), they used total variation. This flexibility will give
much better results for sparse components which are not spikes as happens with `1, but have
structure. Again, split Bregman gave reliable, accurate results. We are currently extending
this to five dimensions, using space, time and energy. This decomposition already has given
promising results in coded aperture snapshot spectral imagery. Simultaneously, co-PI Carin
and collaborators have developed a different approach to the same problems based on a
beta process approach, that leads to the construction of a dictionary which contains a good
basis for the observed data. This basis can be used together with the variational robust
PCA approach, where the regularization is not `1, TV or framelets, but the `1 sum of these
basis’ coefficients or the associated nonlocal total variation based on these functions. This
could be used in an iterative procedure, where we restore using a given dictionary and
optimization, then improve the dictionary via this beta process, etc. Standard robust PCA
involves an efficient convex optimization, but lacks an obvious probabilistic interpretation.
The beta process updates the probability that particular models are consistent with data
observations, but lacks a convex optimization interpretation. Combining these approaches
will lead to advantages in robustness and accuracy.

A natural generalization of these approaches is to put nonlinearity into the low rank
component. Some recent work done at UCLA [12] on blind restoration of a video of an
image taken through a turbulent background has been quite successful using a model of
the unknown image applied to an unknown random diffeomorphism. This could be incor-
porated, via splitting, in a robust PCA framework. Preliminary results are promising.

Improved Filtering for Dynamic Processing

Much of the UIIC data will come as a discrete time series. Just as `1 and TV regulariza-
tion have improved solutions of inverse problems over quadratic regularizations, the same
approach could be used to improve discrete-time and Kalman filters. With Russell Warren
of EOstatinc, we have the following:

Our starting point is the discrete-time Kalman filter. We consider the linear evolution
of the M -dimensional state vector xk for 1 ≤ k ≤ N samples through the Markov model
xk = Φxk−1 +qk, where Φ is the state transition matrix, and qk are the plant noise variables
modeled as independent, identically distributed (i.i.d.) normal random variable with mean
zero and covariance Q. We assume that Φ and Q are known. The variables xk are not
observed directly, but through the measurement model yk = Axk + wk, where yk are the
K-dimensional data at time step k, A is a known K×M matrix, and wk is the measurement
noise vector assumed to be i.i.d. normal with mean zero and covariance matrix R.

The well-known discrete Kalman filter recursions for estimating xk and its covariance
Pk lead to simpler formulas for the variables xk|k−1 and Pk|k−1, the model predictions of
xk and Pk given data up to time-step k − 1, Kk is the Kalman gain matrix, and xk|k and
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Pk|k are the measurement update estimates using the new data yk. The recursions are
initialized by x0|0 and P0|0. Having the estimates of xk and Pk, we can form the density of
xk conditional on the data up to time-step k, Yk ≡ {yj|1 ≤ j ≤ k} :

f (xk|Yk) =
1

(2π)M/2|Pk|k|1/2
exp

[
−1

2
(xk − xk|k)TP−1

k|k (xk − xk|k)
]
.

This density (through its log-likelihood) forms the basis for adding the split Bregman
regularization through an augmented Lagrangian approach.

More specifically, we define the augmented Lagrangian for time-step k:

L(xk, dk, bk) = −lnf(xk|Yk) + ||dk||1 + λ〈bk, xk − dk〉+
λ

2
||xk − dk||22,

and construct the saddle point estimates

(x∗k, d
∗
k, b
∗
k) = min

xk,dk
max
bk

L(xk, dk, bk).

After substituting the definition of f(xk|Yk), and differentiating with respect to xk, we find
at iteration l,

x
(l+1)
k = (P−1

k|k + λI)−1
(
P−1
k|kxk|k + λ

(
d

(l)
k − b

(l)
k

))
.

The corresponding updates to b and d are found by shrinkage and explicitly to be

d
(l+1)
k = Sλ

(
x

(l+1)
k + b

(l)
k

)
, b

(l+1)
k = b

(l)
k + x

(l+1)
k − d(l+1)

k .

As a very simple example, we compared the standard Kalman, split Bregman, and combined
Kalman/SB estimates on simulated time-series data constructed by adding white noise
to a blurred two-spike model. The Kalman/SB procedure significantly outperformed the
others. This idea could easily be extended to discontinuous time sequences using TV,
rather than l1 regularizations. In fact, more complicated dictionary based NLTV type
regularizations, obtained, e.g., from beta processes, could be used effectively. Results
in [12] were improved by our colleague M. Micheli, using a Kalman filter together with
optical flow and variational methods. We believe that combining this type of filtering
with more sophisticated regularization is now tractable and will yield improved results for
discontinuous data, received as a times-series, allowing efficient decision making.

Supervised Learning Method

Support vector machine (SVM), a classical supervised learning method that recognizes
patterns and analyzes data, is widely used for classification and regression analysis. The
standard SVM classifier is trained by quadratic programming (QP) with a combination
of equality and inequality constraints [18]. An efficient SVM algorithm should not only
be time-saving, but also keep the sparsity in support vectors, since later implementation
requires processing of each new feature vector by matrices involving the entire training set.

Recently, inspired by the superior performance of the split Bregman method in `1 based
minimization, we have derived a new efficient algorithm, split Bregman training of the
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SVM classifier, for the above optimization problem. In order to test efficiency on high
dimensional data, we designed numerical experiments and did some comparisons. For each
N , we randomly generated a N × N positive definite matrix A as the input data, and
recorded the time cost for both algorithms to solve for α. The difference between each pair
of solutions is at most 10−7 in `1 norm. We ran the code 10 times and calculated the mean
of the time displayed in Fig. 3.

Figure 3: Comparison between algorithm (SB) and standard QP on simulated data.

Because of the above promising results and others, we believe our algorithm can deal
with high dimensional data more effectively and accurately than conventional methods
[18]. Our successful approach can be used for many unsupervised, semi-supervised and
supervised models in machine learning besides SVM. The superior performance of split
Bregman can help us build effective a priori recognition patterns for future data collection
and the improved learning split Bregman approach has innumerable possible applications.

We now have several general procedures for solving problems related to SVM. In fact,
any problem of the form min

[
1
2
αTAα− αTf

]
, A is symmetric positive semidefinite, α =

P (d), where P is a projection onto a convex set, can be solved with any of the following
three new algorithms:

I Split Bregman (proven to converge for λ > 0)

Step 1: dk+1 = P (αk − bk);
Step 2: αk+1 = (λA+ I)−1(λf + P (dk+1) + bk);

Step 3: bk+1 = bk + P (dk+1)− αk+1 .

II Explicit projection (proven to converge for λ||A|| < 2).

αk+1 = P ((1− λA)αk + λf) .

III Implicit projection (proven to converge for A positive definite)

Step 1: dk+1 = dk − 2(αk − P (λf + 2αk − dk));
Step 2: αk+1 = (λA+ I)−1dk+1 .

For example, with A = BTB, we can solve the least squares problem: min ||Bu−g||22, u ≥
0, for B tall and thin, much faster than current MATLAB routines. This is very useful for
hyperspectral unmixing.

Anomaly and Target Detection
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Figure 4: Target de-
tection using `1 tem-
plate matching.

Osher and colleagues have worked on several projects that are re-
lated to the problem of anomaly detection. Although our previous
work addressed different areas of hyperspectral imaging, includ-
ing target detection, unmixing, endmember detection and image
fusion, we believe that each of these projects contains some ideas
that might be very useful for anomaly detection. In [8] a new hy-
perspectral target detection technique based on `1 regularization
was proposed. Fig. 4 shows an example via `1 template matching:
this is a hyperspectral image of a plant where two artificial leaves
were added to the otherwise natural plant. Using the pixels in the
boxes to perform target detection, our method detects the pixels
marked in red as artificial. Despite the challenging data which is
indistinguishable in the visible spectrum we were able to achieve a positive detection rate of
97.7%. The above method could be useful for anomaly detection: Besides being a reliable
tool for identifying pixels similar to a certain target signature, one could use the template
matching algorithm as a spectral clustering approach. For instance, starting with a random
pixel as the targets signature, we find all pixels that are similar using the template match-
ing algorithm. We remove all previously detected pixels from the image and repeat this
procedure until no more pixel are left. As a result we obtain groups of spectrally similar
pixels and can analyze the groups consisting of only very few pixels further with respect to
the question if they are anomalies.

2.2 Thrust II: Graphical and Fusion Methods and Temporal Data
Analysis, leader A. Bertozzi

Multimodal Data Fusion

Bertozzi’s group has carried out focused efforts in multimodal datafusion resulting in new
fused datasets that allow for inference of information not present in individual data. Two
examples are discussed here. In [19, 20] we proposed a new method for fusing a low
spatial resolution hyperspectral image with a high spatial resolution gray scale image, while
preserving the spectral information. Figure 5 shows an example of such a fusion result.
The left image is a high spatial resolution image we obtained as a screen shot from google
maps. The middle image shows the same scene of the false color hyperspectral image. The
spatial resolution of this image is too low to identify what the black spots on the white roof
could be. After fusing the images, we can clearly see that there are some pipes on the roof
and we have their spectral composition preserved.

This type of image fusion will be generalized to data coming from various types of
sensors. Most likely, hybrid methods using as much spatial and spectral information as
possible have the highest chances of producing robust anomaly detection results. In parallel,
we will incorporate spatial information via TV minimization for anomaly detection. In [21]
we consider the problem of estimating spatial probability densities from human event data.
Fig. 6 shows spatially embedded human event activity and how additional information
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Figure 5: Hyperspectral image fusion from [19]. Left image from Google maps, middle
image is hyperspectral AVIRIS data. Fused image on right (false color).

Figure 6: From left to right: (1) locations of 4,487 residential burglaries in an 18×18km area
of the San Fernando Valley during 2004-2005; (2) maximum penalized likelihood estimation
of the crime density using fast TV regularization [22]; (3) residential housing density for
the same region; (4) Modified MPLE method including edge information from (3) [21].

such as residential housing density can provide more accuracy. These examples show how
to combine various modalities including spectral, spatial, and human activity however they
do not include temporal data. One challenge that this project will address is data fusion
across space and time and the ability of datafusion algorithms to aid in identification of
real time anomaly detection in complex and incomplete datasets combining with ideas from
Osher’s work and with Bayesian methods in collaboration with Carin.

Graph Based Methods

Bertozzi and Arjuna Flenner (China Lake) have developed computational algorithms for
classification of incomplete information in a general graph-based framework [23]. The
method applies to very diverse datasets not just those involving spatial and spectral infor-
mation such as high dimensional imagery. For example we have successfully applied the
method to classify party affiliation in the US Congress based on voting records. The algo-
rithm is related to L1-TV approaches and is built around the classical Ginzburg-Landau
functional, a diffuse interface approximation of the TV functional, originally derived for
physical sciences problems such as phase transition. Diffuse interface models in Euclidean
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space are often built around the Ginzburg-Landau functional

GL(u) =
ε

2

∫
|∇u|2dx+

1

ε

∫
W (u)dx

where W is a double well potential. For example W (u) = (u2 − 1)2 in the case where
W has minimizers at plus and minus one. There are several interesting features of GL
minimizers. For example, the transition region between the two phases typically has some
length associated with it and the GL functional is roughly proportional to this length. This
can be made rigorous by considering the notion of Gamma convergence of the Ginzburg-
Landau functional. It is known to converge [24] to the total variation semi-norm,

GL(u)→Γ C|u|TV .

The Ginzburg-Landau functional is used in image processing as an alternative or a rel-
ative to the TV semi-norm. Non-binary data (such as grayscale imagery) can be efficiently
dealt with using a binary bitwise representation of the data and treating each bit separately
[25]. In a typical application we minimize an energy functional of the form

E(u) = GL(u) + λF (u, d)

where different F (u, d) terms correspond to different imaging tasks. The energy E(u) can
be minimized in the L2 sense using a gradient descent, which gives us a modified Allen-Cahn
equation

ut = −δGL
δu
− λδF

δu
= ε∆u− 1

ε
W ′(u)− λδF

δu
.

This can be evolved to steady state to obtain a local minimizer of the energy E.
Convex splitting schemes are based on the idea that an energy functional can be written

as the sum of convex and concave parts, E(u) = Evex(u)−Ecave(u) where this decomposition
is not unique because we can add and subtract any convex function and not change E but
certainly change the convex/concave splitting. When combined with gradient descent, we
perform a time stepping scheme in which the convex part is done implicitly and the concave
part explicitly:

un+1 − un

dt
= −δEvex

δu
(un+1) +

δEcave
δu

(un). (1)

The art then lies in choosing the splitting so that the resulting scheme is stable and also
computationally efficient to solve. This method was popularized by a well-known but
unpublished manuscript by David Eyre [26] and has been successfully used in [27, 28, 25].
This same idea has also been directly discussed in the context of general minimization
procedures for nonconvex functionals [29].

One can consider a generalization of the GL functional to Graphs. This will be in the
same spirit as the work [25] generalizing the GL functional to wavelets. We now describe
how to generalize the Ginzburg Landau functional, or more precisely its L2 gradient flow,
to the case of functions defined on graphs [30]. One challenge is the normalization of the
Laplacian due to the fact that we are working with purely discrete functionals that may
not have a direct spatial embedding. Consider an undirected graph G = (V,E) with vertex
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! !
Figure 7: (left) Two moon dataset embedded in R100, segmented via second eigenvector of
the graph Laplacian vs. the Ginzburg-Landau functional [23]; (right) Performance com-
parison for GL-minimization vs. recent 2-Laplacian and 1-Laplacian methods.

set V = {v1, . . . , vN} and edge set E. The edge set of an unweighted graph can be defined
from a binary weight function w(v, u) where

w(v, u) =

{
1 if there exists an edge joining vertex v and vertex u with v, u ∈ V ,
0 if no edge exists joining v and u with v, u ∈ V .

(2)

The degree of a vertex v ∈ V is defined as d(v) =
∑

u∈V w(v, u). Note that, by the definition
of w(v, u), d(v) simply counts the number of connections between two elements u, v in the
vertex set V . The degree matrix D can then be defined as the N ×N diagonal matrix with
diagonal elements d(v). Define the graph Laplacian L(u, v) as

L(u, v) =

{
d(u) if u = v,

−w(u, v) otherwise
(3)

it can be written in matrix form as L = D−W where W is the matrix w(u, v). The above
construction easily generalizes to weighted graphs. A weighted undirected graph [30] has
an associated weight function w : V ×V → R satisfying w(u, v) = w(v, u) and w(u, v) ≥ 0.
The definition for the degree of the vertex d(v) and the volume of a subset A, vol(A), and
the graph Laplacian are the same as the unweighted graph [30, 31]. In [23] we use the
symmetric Laplacian Ls defined as

Ls = D−1/2LD−1/2 = I −D−1/2WD−1/2. (4)

The symmetric Laplacian is named as such since it is a symmetric matrix. The random
walk Laplacian is another important normalization and arises in recent work on nonlocal
means functionals [32, 13, 14]. One can extend the Ginzburg-Landau energy to graphs by
minimizing the following [23]

ε < Lsu, u > +(
1

ε
)
∑

W (u) +
∑

λ(x)(u− u0)2, (5)

where the sum is over all nodes on a graph and the Ls is defined above. The last term
in the energy is a fidelity term that represents known information on part of the image
specified by the characteristic function lambda. The method minimization is performed
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quickly using a combination of a convex splitting algorithm and fast linear algebra routines
for computing the eigenvectors and eigenfunctions of the graph Laplacian. An example
with high dimensional abstract data is shown in Fig. 7. In another example we are able
to predict with over 95% accuracy, the party affiliation of all members of the US House
of Representatives based on known affiliation of just 5 members and voting records for 16
votes in 1984. In a third example (Fig. 8) we consider an image of cows in which the animals
are (inaccurately) hand labeled in the first image an automatically identified in the second
image. This last example uses non-local means weights for the graph Laplacian in which
the entire weighted graph is fully connected. This results in a computationally expensive
linear algebra problem that can be done efficiently using Nyström extension methods [33].
The results are more efficient than traditional TV-NL means methods with similar results.

Figure 8: In this machine learning example, cows are roughly segmented by hand in the
first image and automatically identified in the second image [23].

Temporal signatures in complex data

Bertozzi’s group has also been active in developing models for temporal signatures in com-
plex datasets. There are two classes of examples they have worked with: change point
detection filters and self exciting point process models.

Change point detection methods are used for real time decisions based on noisy
datasets when the question of interest is to identify a change of state with a low false alarm
rate and low average detection delay. Her group has applied cumulative sum filters [34, 35]
to specific problems such as robotic path planning based on noisy sensor information for
tasks such as obstacle avoidance in real time [36] and cooperative boundary tracking [37, 38].
The latter idea has been extended to the design of algorithms for boundary tracking in large
image datasets [39] and has led to a CDI grant from the NSF for the design of real-time
algorithms for atomic force microscopy in collaboration with Lawrence Berkeley National
Lab. The CUSUM filter applied to time series data is the optimal method for detecting
sharp jumps, in contrast to the Kalman filter which assumes a linear change of state. As
an analogy to variational methods for spatial data, the Kalman filter is the analogue of the
Wiener filter whereas the CUSUM filter would be analogous to total variation minimization.
It would be interesting to explore the design of new algorithms based on these different
filtering techniques in applications of interest to this project.

Self-exciting point process models are well-known for modeling aftershocks in
earthquake data. Very recently they have provided significant insight into tracking and
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Figure 9: Temporal clustering of the interaction events between Clover and East Lake gangs
in Los Angeles, during the period 1999-2002.

modeling human activity that is not entirely random in time. Some examples from the
literature include domestic crime such as burglaries and robberies [40], more organized
crime such as gang retaliation [41, 42], and very recently the study of IED activity in Iraq
[43]. Fig. 9 shows known temporal activity between a pair of rival gangs in the Hollen-
beck division of the Los Angeles Police Department, during the period 1999-2002. Note
the clustering of events in time. This type of data, for which many of the activities are
known to be retaliatory and thus not random, can be modeled by a Hawkes process [44, 45]
λ(t) = µ+θ

∑
ti<t

ωe−ω(t−ti) where µ is the background rate of events in the absence of self-
excitation, ω−1 sets the timescale over which the overall rate λ(t) returns to its basely level
after an event occurs. From the behavioral point of view, θ represents the average number
of direct offspring for each event and ω−1 is the expected waiting time until an offspring. In
our recent work [41] we have used this model to develop an algorithm for filling in missing
information from a network of gang crimes. An open problem is to develop filtering tech-
niques to accurately distinguish between excitation events and background events. Such
problems are of high importance in accurately predicting adversarial behavior.

2.3 Thrust III: Nonparametric Bayes, Heterogeneous Data and
Value of Information, leader L. Carin

There has been much recent interest in developing statistical models for automatic cluster-
ing and annotation of images, based on local image features as well as available meta-data
such as image annotations [46, 47, 48, 49, 50, 51, 52, 53]. Such models constitute a natural
way to jointly analyze heterogeneous data with distinct alphabets (here images and docu-
ments, but the statistical methods are general). In the proposed research we will develop
these models and the underlying theory, for general heterogeneous data, and make connec-
tions to optimization-based approaches that will be the focus of other team members (Prof.
Bertozzi). Below we discuss the problem of joint analysis of imagery and documents (e.g.,
HUMINT), to make the discussion concrete.

Statistical topic models, such as probabilistic Latent Semantic Analysis (pLSA) [54]
and Latent Dirichlet Allocation (LDA) [55], originally developed for text analysis, have
been successfully applied for these image-analysis tasks by representing an image as a
bag of visual words [47]. Local image descriptors, e.g., scale-invariant feature transform
(SIFT) [56], are commonly used to extract features from local patches, segments, or super-
pixels [52]. The extracted local features are used to design a discrete codebook (i.e.,
vocabulary) with vector quantization (VQ). When analyzing images, each local descriptor
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is subsequently assigned to one of the codewords [47, 51, 52], with these codes playing
the role of discrete words in traditional documents. Although significant success has been
achieved with this approach, there is no principled way to define the codebook size, and
hence this parameter must be tuned and is in general a function of the dataset considered.
Further, the feature extraction (e.g., via SIFT) is performed separately from the subsequent
statistical analysis, making it unclear which features should be used and why one class of
features should be preferred.

Recent research on dictionary learning and sparse coding has demonstrated superior
performance in a number of challenging image processing applications, including image
denoising, inpainting and sparse image modeling [57, 58, 59]. Recent advances in image
classification show that substantially improved performance may be achieved by extracting
features from local descriptors with dictionary learning and sparse coding, this replacing
VQ [60, 61]. However, it is not clear how to integrate these tools with topic modeling, to
constitute an overall statistical model.

In the discussion below we propose a novel Bayesian model that integrates dictionary
learning, sparse coding and topic modeling, for joint analysis of multiple images and (when
present) associated annotations (which plays the role of HUMINT). The model links topics
to probabilities for use of particular dictionary elements, with the dictionary learned jointly
while performing topic modeling. The learned model clusters all images into groups, based
upon dictionary usage, and a statistical distribution is also provided for words that may be
associated with previously non-annotated images (only a subset of the images are assumed
annotated when learning the model). Below we develop the modeling framework and
explain how inference is performed; preliminary results from the analysis are demonstrated
on common databases, with comparisons to previous research on similar problems.

Review of Bayesian Dictionary Learning and Topic Modeling

Let xi ∈ RP represent the ith data sample and {xi}i=1,N represents the complete data
set under analysis. For the application considered here, each xi corresponds to a set of
contiguous pixels (from a small image “patch” extracted from an overall image). The set
{xi}i=1,N represents data extracted from N image patches, across all images of interest.
Each xi is represented as a linear combination of a sparse set of atoms from a dictionary
D ∈ RP×K , where the columns of D represent dictionary atoms. A prior is placed on D,
and a posterior density function on D is learned based on {xi}i=1,N . Further, the size of
the dictionary (total number of active atoms across all xi) is unknown, and to be inferred;
i.e., it is anticipated that only a subset of the K dictionary elements are used. Specifically,
for each i, xi = Dαi + εi, where αi ∈ RK is sparse and ‖εi‖2/‖xi‖2 � 1. Additionally, a
prior is placed on {εi}i=1,N , and the statistics of the residual are also to be inferred.

In recent research [59], it has been demonstrated that the beta process (BP) and
Bernoulli process (BeP) may be coupled to constitute a prior on {αi}i=1,N and D, to
impose the desired sparseness and to infer the dictionary composition and size; this con-
struction also imposes that many of the xi will use a similar subset of columns of D. In
the model developed below, we consider analysis of multiple images simultaneously. Each
image is drawn from a distribution over topics, and therefore each image is associated with
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one topic. Each topic is characterized by a distribution over object types that may occur
in the image, and in the absence of annotations the number of object types is inferred via
the images alone. When annotations are available, the number of objects is linked with the
total number of unique words across all annotations. To link the topic model to dictionary
learning, each object type will have an associated probability of using columns of D, and
therefore each object type places a prior on the sparseness of the coefficients αi. In this
manner, topic modeling and dictionary/feature learning may be performed jointly.

Bayesian Hierarchical Model

Given a set of M images, we represent each image as a set of local patches. The mth image is
represented as {xmi}i=1,Nm , where Nm represents the total number of patches in this image,
and xmi is the data from the ith patch. We use Bayesian dictionary learning on the data
{xmi}m=1,M ;i=1,Nm to infer a dictionary D under which each xmi is sparsely represented.
Specifically, each xmi is represented as xmi = D(zmi � smi) + εmi where � represents the
pointwise/Hadamard vector product, K is the truncation level on the possible number of
dictionary atoms, zmi = [zmi1, · · · , zmiK ]T , smi = [smi1, · · · , smiK ]T , zmik ∈ {0, 1} indicates
whether the kth atom is active within patch i in image m, smik ∈ R, and εmi is the residual
error. Note that under an appropriate dictionary D, zmi represents the specific sparseness
pattern of dictionary usage for xmi. This part of the model is as in previous Bayeasian
dictionary learning [59], and the unique component of the model is to link the sparse binary
vector zmi to a topic model. We assume that each image is associated with a topic (scene
class). Each topic is in turn characterized by a distribution over objects. Finally, each
object is characterized by a distribution on the usage of particular dictionary elements.

Let rm ∈ {1, · · · , T} indicate the topic (scene type) the mth image is associated with;
this random variable is assumed drawn from a multinomial distribution µ = (µ1, · · · , µT )T

with a uniform Dirichlet prior as

rm ∼
T∑
t=1

µtδt, µ ∼ Dir(αµ/T, ..., αµ/T ), (6)

where δt is a unit measure at the point t. Each topic is characterized by a distribution over
object types, with a maximum of J object types assumed. The probability vector νt ∼
Dir(αν/J, · · · , αν/J) defines the probability that each of the J objects is observed in topic
t ∈ {1, . . . , T}. Hence, if topic rm ∈ {1, . . . , T} is associated with image m ∈ {1, . . . ,M},
then the objects associated with image m are drawn from νrm . Let hmi ∼

∑J
j=1 νrmjδj

represent an indicator variable defining which of the J objects is associated with patch i
in image m.

We now place a probability distribution on use of dictionary elements (columns of D)
that is linked to which object a given patch is associated with. Hence, for each object
type, we define a probability over usage of the K potential dictionary elements (columns of
D). Specifically, the vector πj defines the probability that each of the K columns of D is
employed to represent object type j ∈ {1, . . . , J}, where the kth component of πj is a prob-
ability satisfying πjk ∈ (0, 1), k ∈ {1, . . . , K}. This K-dimensional vector of probabilities

is defined as πj ∼
∏K

k=1 Beta(c0η0, c0(1− η0)). Then as in conventional dictionary learning
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[59], the binary vector zmi ∼
∏K

k=1 Bernoulli(πhmik) defines which dictionary elements are
used for representation of xmi. Summarizing, for the mth image, we first draw a topic rm.
Then, for each patch i in image m we draw an object type hmi ∼ Mult{νrm}. Finally, for
this object type there is an associated probability vector of Bernoulli inputs πhmi , from
which the binary vector zmi is drawn, defining which columns of D are used for represen-
tation of the data in patch i of image m, xmi. If annotations are available for at least a
subset of the M images, it is desirable to leverage this information. When available, the
words associated with image m are represented as ym = (ym1, . . . , ymJ), where ymj denotes
the number of times word j is present in the annotation to image m. Typically, ymj will be
either one or zero. Since the number of words in the annotation |ym| may be very differ-
ent than the number of patches Nm, we scale ym such that the words and image features
contribute comparably within the likelihood function. Specifically, we perform the scaling
y′m = (Nm/|ym|)ym, where in each component of y′m we take the nearest non-negative inte-
ger. This scaled annotation count is assumed drawn as y′m ∼ Mult(νrm , Nm) such that the
topic-dependent draw of words in the annotation is consistent with the associated draw of
patch-dependent objects within the image. Fig. 10 shows a diagram of the proposed model,
where shaded and unshaded nodes indicate observed and latent variables, respectively. An
array indicates dependence between variables. The boxes are plates that denote repetition,
with the number of repetitions indicated by the variables in the corner of boxes.

Summary of Model Inference

Figure 10: Graphical representation of the
model.

Because each consecutive layer in the
hierarchical model is in the conjugate-
exponential family, efficient Gibbs sampling
inference can be used. The inference equa-
tions for the dictionary D, the binary sparse
codes z and the real sparse codes s are
similar to that in [59], and are omitted for
brevity. Below we briefly summarize up-
date equations for unique aspects of the pro-
posed model:

Sampling πj: the dictionary usage for
object j is sampled from a beta distribution
as:p(πj|−) ∼ Beta(aj, bj) where aj = a0 +∑M

m=1

∑Nm
i=1 δ(hmi = j)zmi, and bj = b0 +∑M

m=1

∑Nm
i=1 δ(hmi = j)(1− zmi).

Sampling rm: the scene category topic
indicator rm is sampled from a T -dimensional multinomial distribution as:

p(rm = t|−) ∝ µt

J∏
j=1

ν
y′
mj+

PNm
i=1 δ(hmi=j)

tj . (7)

Sampling hmi: the object indicator hmi is sampled from a J-dimensional multinomial

19

19



distribution as:

p(hmi = j|−) ∝ νrmj

K∏
k=1

πzmikjk (1− πjk)1−zmik . (8)

Sampling νtj and µt:

p(νtj|−) ∼ Dir(ν∗t1, ..., ν
∗
tJ) p(µt|−) ∼ Dir(µ∗1, ..., µ

∗
T )

where ν∗tj = αν
L

+
∑M

m=1

[
y′mj+

∑Nm
i=1 δ(hmi = j)

]
δ(rm = t) and µ∗t = αµ

T
+
∑M

m=1 δ(rm = t).

Figure 11: The inferred dictio-
nary for the MNIST digit data.

We first test the model using the MNIST handwritten
digit database, considering 50 samples per digit (digits 0
through 9), thus N = 500 in total. We randomly se-
lect 50 partially overlapping patches per digit, and each
patch is of size 15 × 15 (the original digit images are of
size 28 × 28). All the patches are used to constitute the
data matrix X ∈ RP×N , where P = 225 and N = 25, 000.
The matrix X is pre-whitened with principal component
analysis (PCA) and the first L = 100 principle compo-
nents are preserved as features (L = 100 keeps about 95%
energy of the original data, achieves a good balance be-
tween accuracy and complexity). We set truncation levels
as K = 200, J = 50 and T = 20; these are upper bounds
on the associated parameter, while the model infers the number of components needed.
The inferred dictionary atoms are shown in Fig. 11 in order of importance. For some runs,
the proposed model infers more than 10 non-zero topic weights, i.e., some digits such as 4
and 5 tend to occupy more than one topic and there may be a total of 12 topics inferred. In
order to draw a confusion matrix, multiple topics of the same digit are combined according
to the ground truth. The average confusion matrix is calculated in Fig. 12 with the average
performance 80.4%. This performance is achieved with an unsupervised model.

Figure 12: Confusion matrix for
the MNIST digit data. The
value for a blank parts is zero.

For the MSRC data (from Microsoft Research), we
choose 320 images from 10 categories of images with
manual annotations. The categories are “tree”, “build-
ing”, “cow”, “face”, “car”, ”sheep”, “flower”, “sign”,
“book” and “chair”. There are respectively 45 and 35
images in the “cow” and “sheep” classes, and 30 in all
the other classes (here the category is expected to be as-
sociated with a topic in our model). Each image has size
213 × 320 or 320 × 213. We evenly divide each (color)
image into 32 × 32 × 3 non-overlapping patches. Simi-
larly to the experiment setting for the MNIST digit data
set, we choose L = 100, K = 200 and T = 20. No
parameter optimization has been performed. For anno-
tations, we remove all annotation-words that occur less
than 8 times (approximately 1% of them). There are
15 unique annotation-words: ”building”, “grass”, “tree”,
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“cow”, “sheep”, “sky”, ”water”, “face”, “car”, “flower”, “sign”, “book”, ”chair”, “road”
and “people”. For each category, we randomly choose 10 images, and remove their annota-
tions, treating them as non-annotated images within the analysis (to allow quantification of
inferred-annotation quality). We assume that each annotation word corresponds to a visual
object in the image, thus J = 15. With these data we typically infer 14 topics (there are
actually 10 scene types from which the images are constituted). We use the same method
as in the MNIST experiment to integrate multiple inferred topics/scenes, to compute a
confusion matrix. The average performance is 86.8%, outperforming the results in [52] by
3.9% under the same test settings.

Based on the learned posterior word distribution νt for the tth scene class, we can fur-
ther infer which objects are most probable for each scene class (topic). Figure 13 shows the
νt for 9 classes, with the largest five probabilities displayed, a good connection is manifested
between the words and image types.

Figure 13: Each topic is characterized by a distribution over objects, and these objects may be linked
to words via the annotation, when available. For the MSRC data we display the word probabilities for
inferred topics. We may therefore connect words to the topics, with the first row reflecting “tree”, “car”
and “flower” topics, for example.

6. Value of Information
An important aspect of the proposed program involves adaptive collection of data, to

remove uncertainties and mitigate contradictory data. The statistical models discussed
above naturally yield measures of confidence in each inference, as quantified in terms of
the posterior density function. These statistical measures will be used within the proposed
research to quantify the value of new data acquisitions, accounting for acquisition costs,
within a risk-based construction. New ideas from submodular theory will be employed to
yield performance guarantees on the overall system performance.
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3 Project Schedule and Milestones

Below we give a detailed summary of the tasks to be undertaken in the proposed program.
For each task we list the anticipated execution time, as well as the investigator taking the
lead responsibility. Within the proposed program the three investigators will act as an
integrated team, with frequent communication, and visits to the two institutions by the
PIs and associated graduate students and post docs. All investigators on the team are
highly experienced, and therefore the management overhead is anticipated to be minimal.
A key component of the proposed research, anticipated by close interaction between the
investigators, is to yield a unifying theory around the optimization and Bayesian statistical
and mathematical tools proposed here.

3.1 Year 1 Tasks

Task 1A: Development of graphical methods for timeseries data
Lead: Bertozzi; time period: 6 months

Task 1B: Data fusion methods combining with Bayesian dictionaries
Lead: Bertozzi; time period: 6 months; collaborating lead: Carin

Task 1C: Nonparametric-Bayesian analysis of heterogeneous space-time data
Lead: Carin; time period: 7 months

Task 1D: Incorporation of graphical priors in Bayesian analysis
Lead: Carin; time period: 5 months; collaborating lead: Bertozzi

3.2 Year 2 Tasks

Task 2A: Variational robust PCA using improved regularization with the help
of beta processes
Lead: Osher; time period: 6 months; collaborating lead: Carin

Task 2B: Combine variational robust PCA with beta processes using an it-
erative procedure
Lead: Osher; time period: 6 months; collaborating lead: Carin

Task 2C: Temporal modeling of timeseries data embedded in high dimensional
graphs
Lead: Bertozzi; time period: 6 months

Task 2D: Concept Drift and Model Refinement Over Time
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Lead: Carin; time period: 6 months 
 
3.3 Year 3 Tasks 
Task 3A: Value of Information & Submodularity 
Lead: Carin; time period: 6 months 
 
 
Task 3B: Information value as timeseries data 
Lead: Bertozzi; time period: 6 months; collaborating lead: Carin 
Task 3C: Include nonlinear effects in the low rank components of this 
combined sparse/low rank decomposition 
Lead: Osher; time period: 6 months 
Task 3D: Improve Kalman and other time series filtering via modern 
regularization techniques 
Lead: Osher; time period: 6 months; collaborating lead: Bertozzi 
 
 
3.4 Year 4 Tasks 
Task 4A: Improve support vector machine and other learning methods 
via split Bregman and projection methods 
Lead: Osher; time period: 6 months 
Task 4B: Prediction of self-excitation in adversarial data 
Lead: Bertozzi; time period: 6 months; collaborating lead: Carin 
Task 4C: Online Learning and Very-High-Dimensional Data Sets 
Lead: Carin; time period: 6 months; collaborating lead: Bertozzi 
 
 
3.5 Year 5 Tasks 
Task 5A: Variational Bayesian Analysis and Fast Optimization 
Lead: Carin; time period: 6 months; collaborating lead: Osher 
Task 5B: Generalize our anomaly detection and related classification 
and detection techniques by hybrid methods combining various types of 
sensor data 
Lead: Osher; time period: 6 months; collaborating lead: Bertozzi 



Task 5C: Efficient convex splitting methods for graphical time series data
Lead: Bertozzi; time period: 6 months

4 Management Approach

The Principal Investigator is Professor Stanley Osher of UCLAs Mathematics, Computer
Science, Electrical Engineering Departments and its NSF funded Institute for Pure and
Applied Mathematics, who will assume all responsibilities for the program. However the
PI and the two co-PIs, Professor Andrea Bertozzi, of UCLAs Mathematics Department
and Professor Lawrence Carin of Duke Universitys Electrical and Computer Engineering
Department, will form an executive committee to oversee the scientific direction and alloca-
tion of resources. The PI will interface directly with ONR, but scientific and administrative
decisions will be made democratically by the executive committee.

The team members expertise in complementary and overlapping areas, as described in
the technical approach and summarized in Fig. 1 will led to continuous interaction with
the tasks listed below steering us towards desired milestones.

The UCLA team will meet biweekly together with students and postdocs to report on
progress and Professor Carin will teleconference in. He will also visit the UCLA team three
times per year. These visits will be timed to include, whenever possible, Navy personnel
from China Lake.

We intend to freely distribute all of our results, both codes and reports obtained in
this effort to Navy personnel. We will also encourage the Institute for Pure and Applied
Mathematics at UCLA to run short workshops with other participants in this program.
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5 Qualifications

5.1 Stanley J. Osher (sjo@math.ucla.edu)

University of California at Los Angeles
Department of Mathematics
Los Angeles, CA 90095-1555
Tel: 310-825-1758

Professional Preparation
Brooklyn College Physics B.S. 1962
New York University Mathematics M.S. 1964
New York University Mathematics Ph.D. 1966
Appointments
1977-Present Professor, UCLA, Department of Mathematics
1975-1977 Professor, SUNY, Stony Brook, 197577
1970-1975 Associate Professor, SUNY, Stony Brook
1968-1970 Assistant Professor, University of California Berkeley
1966-1968 Assistant-Associate Mathematician, Brookhaven National Laboratories

Synergistic Activities
1. Coinventor and a principle developer of i) state-of-the-art high resolution schemes for
hyperbolic conservation laws and Hamilton-Jacobi equations; ii) level set methods for mov-
ing fronts involving topological changes iii) total variation and other partial differential
equations based image processing techniques, iv) fast algorithms for L1 type optimization.
His work has been in the scientific and international media, e.g. science News, Die Zeit.
2. He has had approximately 60 invited lectures in the past two years.
3. He is or was recently associate editor of 11 journals.
4. He was co-organizer of several long meetings at the NSF-funded Institute for Pure and
Applied Mathematics (IPAM) at UCLA.
5. He is Director of Special Projects at IPAM and has a joint faculty appointment with
UCLAs Electrical Engineering and Computer Science Departments.
6. He has co-founded three successful companies, each based largely on his own research.
7. He has graduated over 50 Phd students and mentored over 45 postdoctoral fellows.

Achievements and Honors Fulbright Fellow, 1971 Alfred P. Sloan Fellow, 19721974
SERC Fellowship (England), 1982 US-Israel BSF Fellow, 1986 NASA Public Service Group
Ach. Award, 1992 Invited speaker, Int. Cong. Math., Zurich, 1994, ICI Original Highly
Cited Researcher, 2002, Japan Soc. of Mech. Eng., Comp. Mech. Award (2002) , ICIAM
Pioneer Prize, 2003, Elected to US Nat. Acad. of Sci., 2005, SIAM Ralph E. Kleinman
Prize, 2005, Docteur Honoris Causa, ENS Cachan, France 2006 US Ass. for Comp. Mech.
Comp. and Appl. Sci. Award, 2007, SIAM Fellow 2009, Elected to the Am. Acad. of
Arts and Sci., 2009, Honorary Doctoral Degree Hong Kong Baptist University 2009, SIAM
Fellow 2009, plenary speaker Int. Cong. of Math. 2010.
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5.2 Andrea L. Bertozzi (bertozzi@math.ucla.edu)

PROFESSIONAL PREPARATION .
PRINCETON UNIVERSITY A. B. in Mathematics, Summa cum Laude, 1987
A. M. in Mathematics, 1988, Ph. D. in Mathematics, 1991
UNIVERSITY OF CHICAGO L. E. Dickson Instructor and NSF Postdoc, 1991-5

APPOINTMENTS .
UNIVERSITY of CALIFORNIA LOS ANGELES Professor of Mathematics 2003-

present, Director of Applied Mathematics, 2005-present.
DUKE UNIVERSITY Professor of Mathematics and Physics 1999-2004
Associate Professor of Mathematics, 1995-1999
ARGONNE NATIONAL LABORATORY Maria Geoppert-Mayer Distinguished Scholar,
95-6

SYNERGISTIC ACTIVITIES .
1. PI on NSF workforce grant, overseeing training program for 30 REU students each year,
including several projects of interest to ONR.
2. Membership on journal editorial boards:Applied Mathematics Research eXpress, SIAM
J. Math. Anal., Advances in Differential Equations, Mathematical Models and Methods in
the Applied Sciences (M3AS), Multiscale Modeling and Simulation (SIAM), Nonlinearity,
Interfaces and Free Boundaries.
3. Chair of Scientific Advisory Board, Institute for Computational and Experimental Re-
search in Mathematics, Brown University.
4. Plenary talks at: AMS-SIAM-MAA Joint Meetings-San Antonio 1999, Atlanta 2005,
and New Orleans 2011, ICIAM 2011, ANZIAM (Australia) 2011, SIAM Materials Meeting-
1999, SIAM 50th Anniversary Annual Meeting-2002, SIAM Annual Meeting - Boston 2006,
European Consortium on Mathematics in Industry, London 2008, SIAM Conf. Nonlinear
Waves, Rome 2008, Sonia Kovalevsky Lecture SIAM 2009.

HONORS AND AWARDS .
Elected American Academy of Arts and Sciences, 2010
Elected SIAM Fellow, 2010
Sonia Kovalevsky Prize, SIAM, 2009
Presidential Early Career Award for Scientists and Engineers, 1996-2001
Young Investigator Award, Office of Naval Research, 1996-9
Alfred P. Sloan Research Fellowship 1995-9
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5.3 Lawrence Carin (lcarin@ee.duke.edu)

Education

Ph. D. in Electrical Engineering, August 1989
University of Maryland
College Park, MD

M.S.E.E., December 1986
University of Maryland, College Park

B.S.E.E., May 1985
University of Maryland, College Park

Employment

William H. Younger Professor of Engineering, 7/1/03 to present
Duke University

Co-Founder and Director of Technology, 5/1/05 to present
Signal Innovations Group, Inc., Durham, NC

Associate Professor and Professor, 8/1/95-6/30/03
Department of Electrical Engineering
Duke University
Durham, N.C.

Assistant Professor and Associate Professor, 9/1/89-7/31/95
Department of Electrical Engineering
Polytechnic University
Brooklyn, N.Y.

Honors

William H. Younger Distinguished Professor of Engineering (2003)
IEEE Fellow (2001)
DoD SERDP Cleanup Project of the Year (2000, 2005 and 2009)
National Science Foundation Research Initiation Award (1992)
Tau Beta Pi and Eta Kappa Nu

27

27



References

[1] E. Wang, D. Liu, J. Silva, D. Dunson, and L. Carin, “Joint analysis of time-evolving
binary matrices and associated documents,” in Neural and Information Processing
Systems (NIPS), 2010.

[2] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?”
Journal of the ACM, 2011.

[3] X. Ding, L. He, and L. Carin, “Bayesian robust principal component analysis,” IEEE
Trans. Image Processing, 2011.

[4] M. Hoffman, D. Blei, and F. Bach, “Online learning for latent Dirichlet allocation,”
in Neural and Information Processing Systems (NIPS), 2010.

[5] C. Antoniak, “Mixtures of Dirichlet processes with applications to Bayesian nonpara-
metric problems,” Annals of Statistics, no. 2, pp. 1152–1174, 1974.

[6] M. Zhou, H. Chen, J. Paisley, L. Ren, G. Sapiro, and L. Carin, “Non-parametric
Bayesian dictionary learning for sparse image representations,” in Proc. Neural Infor-
mation Processing Systems, 2009.

[7] H. Gao, J.-F. Cai, Z. Shen, and H. Zhao, “Robust principal component analysis based
four-dimensional computed tomography,” UCLA CAM 10-79, Tech. Rep., 2010.

[8] Z. Guo and S. Osher, “Template matching via `1 minimization and its application to
hyperspectral data,” Inv. Prob. Imag., vol. 5, pp. 19–35, 2011.

[9] J. W. Paisley, X. Liao, and L. Carin, “Active learning and basis selection for kernel-
based linear models: a Bayesian perspective,” IEEE Transactions on Signal Processing,
vol. 58, no. 5, pp. 2686–2700, 2010.

[10] A. Krause and C. Guestrin, “Near-optimal observation selection using submodular
functions,” in AAAI, 2007, pp. 1650–1654.

[11] L. Li, M. Zhou, G. Sapiro, and L. Carin, “On the integration of topic modeling and
dictionary learning,” in Proc. Int. Conf. Machine Learning (ICML), 2011.

[12] Y. Mao and J. Gilles, “Restoration of image after atmospheric turbulence,” UCLA
CAM 10-86, Tech. Rep., 2010.

[13] G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,”
Multiscale Mod. Sim., vol. 7, no. 3, pp. 1005–1028, 2008.

[14] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with
a new one,” Multiscale Mod. Sim., vol. 4, no. 490–530, 2005.

[15] E. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?”
2011, submitted.

28

28



[16] T. Goldstein and S. Osher, “The split Bregman algorithm for `1 regularized problems,”
SIAM J. Imag. Sci., vol. 2, pp. 323–343, 2009.

[17] H. Gao, H. Yu, and G. Wang, “True-color CT based on a prior rank, intensity and
sparsity model (PRISM),” UCLA CAM 11-01, Tech. Rep., 2011.

[18] A. J. Smola and B. Scholkopf, “A tutorial on support vector regression,” Stat. Comp.,
vol. 14, pp. 199–222, 2004.

[19] M. Moeller, T. Wittman, and A. L. Bertozzi, “A variational approach to hyperspectral
image fusion,” in SPIE Conf. on Alg. and Tech. for Multispectral, Hyperspectral, and
Ultraspectral Imagery XV, vol. 7334, 2009.

[20] M. Moeller, T. Wittman, A. L. Bertozzi, and M. Burger, “A variational approach for
sharpening high dimensional images,” 2010.

[21] L. Smith, M. S. Keegan, T. Wittman, G. O. Mohler, and A. L. Bertozzi, “Improving
density estimation by incorporating spatial information,” EURASIP J. on Advances
in Signal Processing, vol. 2010, p. 265631, 2010, special issue on Advanced Image
Processing for Defense and Security Applications.

[22] G. O. Mohler, A. L. Bertozzi, T. A. Goldstein, and S. J. Osher, “Fast
TV regularization for 2D maximum penalized likelihood estimation,” Journal of
Computational and Graphical Statistics, vol. 0, no. 0, pp. 1–13, 0. [Online]. Available:
http://pubs.amstat.org/doi/abs/10.1198/jcgs.2010.09048

[23] A. L. Bertozzi and A. Flenner, “Diffuse interface models on graphs for classification
of high dimensional data,” 2011.

[24] R. V. Kohn and P. Sternberg, “Local minimisers and singular perturbations,” Proc.
Roy. Soc. Edinburgh Sect. A, vol. 111, no. 1-2, pp. 69–84, 1989.

[25] J. A. Dobrosotskaya and A. L. Bertozzi, “A wavelet-Laplace variational technique for
image deconvolution and inpainting,” IEEE Trans. Image Process., vol. 17, no. 5, pp.
657–663, 2008. [Online]. Available: http://dx.doi.org/10.1109/TIP.2008.919367

[26] D. J. Eyre, “An unconditionally stable one-step scheme for gradient systems,” 1998,
department of Mathematics, Univ. of Utah.

[27] B. P. Vollmayr-Lee and A. D. Rutenberg, “Fast and accurate coarsening simulation
with an unconditionally stable time step,” Phys. Rev. E, vol. 68, no. 6, p. 066703, Dec
2003.
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